Protoplanetary Disks in the Orion Nebula Cluster (ONC):
Gas-Disk Morphologies and Kinematics as seen with ALMA

Ryan Boyden
Protoplanetary Disks in the Orion Nebula Cluster (ONC):
Gas-Disk Morphologies and Kinematics as seen with ALMA

Ryan Boyden
Orion Molecular Cloud

- Nearest example of massive star formation: ~400 pc

- The Orion A Filament contains multiple Rich Clusters, such as the ONC, NGC 1977 and NGC 1980

Figure: Meingast+2016
Orion Molecular Cloud

• Nearest example of massive star formation: ~400 pc

• The Orion A Filament contains multiple Rich Clusters, such as the ONC, NGC 1977 and NGC 1980

Figure: Meingast+2016
Orion Nebula Cluster

- Contains:
 - >100 disk-bearing, low mass stars
 - Massive Trapezium (OB) Stars

- Important properties of the ONC
 - High Stellar Density
 - Intense UV irradiation from the Trapezium Stars
 - “proplyds"

Credit: NASA
Orion Nebula Cluster

- Contains:
 - >100 disk-bearing, low mass stars
 - Massive Trapezium (OB) Stars

- Important properties of the ONC
 - High Stellar Density
 - Intense UV irradiation from the Trapezium Stars
 - "proplyds"

Credit: NASA
Orion Nebula Cluster

- Contains:
 - >100 disk-bearing, low mass stars
 - Massive Trapezium (OB) Stars

- Important properties of the ONC
 - High Stellar Density
 - Intense UV irradiation from the Trapezium Stars
 - "proplyds"
Orion Nebula Cluster

- Contains:
 - >100 disk-bearing, low mass stars
 - Massive Trapezium (OB) Stars

- Important properties of the ONC
 - High Stellar Density
 - Intense UV irradiation from the Trapezium Stars
 - "proplyds"

Credit: NASA
Orion Nebula Cluster

• Contains:
 • >100 disk-bearing, low mass stars
 • Massive Trapezium (OB) Stars

• Important properties of the ONC
 • High Stellar Density
 • Intense UV irradiation from the Trapezium Stars
 • “proplyds”
Orion Nebula Cluster

- Contains:
 - >100 disk-bearing, low mass stars
 - Massive Trapezium (OB) Stars

- Important properties of the ONC
 - High Stellar Density
 - Intense UV irradiation from the Trapezium Stars
 - "proplyds"
ALMA Program
Probing Planet-forming Zones in ONC Disks

• Cycle 4, #2015.1.00534.S
 • PI: Eisner
 • Central 1.5’ x 1.5’ ONC region
 • Sensitivity: 0.1 mJy / beam
 • Resolution: 0.08” (~35 AU)

• Scientific Goals
 • Detect the disks in dust, CO (3-2), and HCO\(^+\) (4-3)
 • Measure dust and gas properties and compare with other regions

Credit: NASA
Example Detections

Gas: Boyden & Eisner in review
Gas Size Distribution
Gas Size Distribution

- ONC
- Lupus
- Taurus

$P \geq R_{gas}$

R_{gas} (AU)

10^2 10^3
Gas Size Distribution

ONC gas disks are compact

ONC, Lupus, and Taurus gas disks are compared, showing that ONC gas disks are more compact than those in Lupus and Taurus.
R_{gas} Correlations

$R_{\text{gas}, CO}$ vs. d_{toc}

- **CO (3-2)**
- **HCO$^+$ (4-3)**

Distance from Θ^1 Ori C (pc)

Boyden & Eisner in review
Gas-disk sizes are sensitive to changes in UV field strength

\[R_{\text{gas}} \text{ Correlations} \]
Takeaways

1. Disks (gas+dust) in the ONC are impacted by the rich cluster environment
 • e.g., they are compact, and their properties correlate with the distance from θ^1 Ori C

2. Observed kinematics of the ONC gas disks are consistent with Keplerian rotation

3. Future Work: follow-up ALMA observations, radiative transfer modeling, etc.

4. Discuss further? Contact me at rboyden@email.arizona.edu
Orion Nebula Cluster

• Contains:
 • >100 disk-bearing, low mass stars
 • Massive Trapezium (OB) Stars

• Important properties of the ONC
 • High Stellar Density
 • Intense UV irradiation from the Trapezium Stars
 • “proplyds”

Ricci et al. (2008)
Keplerian Modeling

“181-247”; HCO\(^+\) (4-3)

Boyden & Eisner in review
Keplerian Modeling

“181-247”; HCO\(^+\) (4-3)

Blue-Shifted Emission
~Rest Emission
Red-Shifted Emission

Boyden & Eisner in review
Continuum Mosaic

\[\theta^1 \text{ Ori C} \]

\(0.02 \text{ pc} \)
Continuum Mosaic

Dust Detections (Blue)

Eisner+2018
Dust-Disk Sizes

![Graph showing the probability of dust disk sizes versus disk radius in au for different regions (Lupus, UpSco, Oph, Taurus, Cham I, ONC)].

Eisner et al. 2018
R_{gas} Correlations

- $R_{\text{gas}, CO}$ vs. d_{toc}
- R_{dust} vs. d_{toc}

Boyden & Eisner in review
R_{gas} Correlations

$R_g = R_d$

Boyden & Eisner in review
R_{gas} Correlations

![Graph showing correlations between R_{gas} and R_{dust} with data points for HCO^+ (4-3) and CO (3-2).]

Taurus fit

Lupus fit

R_{g} \sim 2R_{d}

Boyden & Eisner in review
Large scale emission near most CO kinematic disk detections: "Cloud Contamination"