Los Alamos National Lab's Contribution to the LOX Mission

K.J. Chapman¹, A.L. Hungerford, P.F. Bloser, C.L. Fryer, R. Miller²

¹ Los Alamos National Laboratory ² Johns Hopkins Applied Physics Laboratory

The Lunar Occultation eXplorer (LOX)

Type IA Supernovae

- will use the Moon as a platform to probe the cosmos at **MeV** energies
- well-suited for all-sky monitoring and time-domain astronomy pertinent to

- Standard model picture of SNeIa is difficult to produce from UVOIR-based trends
- Information loss from nuclear

)	Astro2010 Decadal Survey Findings	Top-Level Science Goals	Top-Level Science Objectives
ar	What are the progenitors of SNeIa and how do they explode? (SSE2) Why is the Universe accelerating? (CFP2) How do stars form? (PSF1) What controls the mass- energy-chemical cycles	Characterize the Spectral Evolution of Type-la Supernovae	Parameterization of Type-Ia Gamma-Ray Light Curves
		Quantify the Diversity of Type-la Supernovae	Population Studies of Type-Ia Supernovae Spectral Evolution, Including Identification of Subclasses
		Probe the Thermonuclear Physics & Standardization of Type-la Supernovae	Perform Census of Type-Ia Supernovae Progenitor Subclasses
	"Areas of Unusual Discovery Potential":		Perform Census of Type-Ia Supernovae Environments
	Time-Domain Astronomy & Surveys		Connection to Type-la Supernovae UVOIR Diagnostics

supernova investigations

- UVOIR SNeIa light curves can be used as standardizable candles with ~15% accuracy — 1% accuracy is needed to determine the nature of dark energy
- An 100-fold improvement in sensitivity will revolutionize nuclear astrophysics and enable population studies of SNeIa
- Big Array for Gamma-ray Energy Logging (BAGEL) = large-area non-imaging spectrometer
- 0.1-10 MeV
- 10% uncertainty

E [MeV]

- radiation reprocessing is inevitable
- γ -rays are a **direct**

consequence of nuclear

physics governing the structure and dynamics of SN

- Spectral evolution encodes information about progenitor systems
- Gamma-ray energy bands contain information about elemental origin and transport processes relevant for SNeIa studies — meaning high-spectral resolution is not critical

Lunar Occultation Technique (LOT)

- The Moon serves as a natural occulting disk to generate required modulation via repeated eclipses of sources
- The Moon is favorable due to lack of atmosphere, magnetosphere, benign background, and well-established lunar albedo

Future work

- modify existing modeling and analysis tools in C++ for spectral analysis, time variability, and cross-correlation with observations at different energies
- modify LOX background model to account for MeV galactic diffuse emission
- create predictive sky maps extrapolating from pre-existing source

Preliminary data cube analysis

- Spectral and time-dependent information spanning a range of parameters from Ni distribution, total mass, total kinetic energy, and Ni mass
- Goal: find correlations in the theoretical data that will map to observational signatures (i.e. the width-luminosity relation, the Phillips relation) across γ-ray energy bands that will be useful to future missions such as LOX

• derive the expected MeV sensitivity from simulated sky maps

• Example: the ratio of the integrated luminosity in the energy band C2 at early times could help distinguish models with differing Ni distributions

The 35th Annual New Mexico Symposium

NATIONAL LABORATORY

lamos