The Evolution of Outflows from High-Mass Stars Viviana Rosero University of Florida

Collaborators: Jonathan Tan (UF), Kei Tanaka (UF), Yichen Zhang (RIKEN), Mengyao Liu (UF/UVa), James De Buizer (SOFIA-USRA), Peter Hofner (NMT), Mark Claussen (NRAO), Stan Kurtz (IRyA), Riccardo Cesaroni (INAF-Arcetri), Esteban Araya (WIU), Karl Menten (MPIfR), Friedrich Wyrowski (MPIfR), Carlos Carrasco-González (IRyA), Luis F. Rodríguez (IRyA), Laurent Loinard (IRyA), Simon Ellingsen (UTAS)

NM Symposium Socorro, NM 11.03.17

High-Mass Star Formation

Previous Work: Dissertation

Radio continuum may be detectable at weak levels in all HMCs

- **58 regions:** 70 mm-associated radio sources
- Detection Rate:
 - 1/18 CMC: 6% ge?
 - 8/15 CMC-IR: 53%
 - 25/25 HMC: 100%
- 12 ionized jets (+13 wind/jets candidates)
- Early stages of ionization are in the form of jets

Predicted SED

Tanaka, Tan & Zhang (2016): early stages of ionization

Predicted Radio Continuum

Expanded Sample

Probing different environments, evolutionary stages and core masses

Total of ~70 sources

Dissertation Survey: Early stages of high-mass star formation (Rosero et al. 2016)

SOFIA Massive (SOMA) Star Formation Survey: IR-based survey (De Buizer et al. 2017).

22 observed + SOFIA cycle 6 approved (PI: Tan)

SOMA Paper I: De Buizer et al. 2017

SOMA Survey

Right Ascension (J2000)

SOFIA FORCAST 10 - 40 μ m Resolution: ≤ 3 "

Zhang & Tan (2014; 2017) RT model based on core accretion scenario

SOMA Paper I: De Buizer et al. 2017

VLA Survey: Expanded Sample

Very sensitive observations at 1.3 and 6 cm

Radio continuum fluxes to constrain the ionizing luminosity of the source
Precise location of the protostar
Nature: ionized jet vs HII region?
Multiplicity

Preliminary Results

Radio continuum is highly effective at breaking degeneracies encountered in the IR only analysis

Gray lines: Five best fits to the Zhang & Tan models

ALMA Follow-up: observations

- Average distance ~ 5 kpc
- \odot L_{bol} ~ 800 6 x10⁴ L_{\odot}
- Cycle 3 at Band 3 (PI: Rosero)
- SiO (2-1), HCO+, H¹³CO+(1-0), HCN, CS, H¹³CN...
- Cycle 5 (PI: Rosero; time granted for 8 SOMA sources)

Credit: ALMA (ESO, NAOJ, NRAO)

Goal: Outflow Structure and 1e2AU 1e3AU 2e Evolution

- Connection between ionized
 (~10³-10⁴ au) and molecular
 (>10⁴ au) components of the flow
- Evolution: Outflow characteristics (e.g., opening angle, momentum rate) changing with time?
- Properties: energetics (e.g., P, M), spatial and kinematical structure, disentangle proto-clusters, association with ionized jets

ALMA High-Mass Protostar Observations: Molecular Outflows

HCO+: entrained (or infall) material, **SiO:** shocked material, **C-band:** ionized material

ALMA High-Mass Protostar Observations: Molecular Outflows

HCO+: entrained (or infall) material, **SiO:** shocked material, **C-b**and: ionized material

Summary

- **O** Large sample (~70 sources) of high and intermediate mass stars
- Outflow cavities shape MIR to FIR morphology and SED
- Comprehensive comparison with theoretical models
- **Solution** Fitting of IR SED alone has significant degeneracies
- Radio continuum is highly effective at breaking degeneracies
- Sinematic information is important to advance this study

Evolution of protostellar properties with mass

 m_*

 \dot{m}_*

 Gm_*^2

 L_*r_*

Timescales

Evolutionary

Thermal adjustment

Equations from Hosokawa & Omukai 2009

 $t_{acc} =$

 $t_{KH} =$

i) $t_{acc} < t_{KH}$: star accreting

- ii) $t_{acc} \approx t_{KH}$: star swelling
- iii) $t_{acc} > t_{KH}$: star contracts
- iv) ZAMS: central T increases

ALMA + VLA High-Mass Protostar Observations: molecular outflows, ionized jets, masers, hint for disks?

