Planetary constraints for solar evolution

Solar models with early mass loss

Suzannah R Wood

Katie Mussack Joyce Ann Guzik

Los Alamos National Laboratory

33rd Annual New Mexico Symposium Socorro, NM 3 Nov 2017

EST.1943 —

Why do we study the sun?

sun is a laboratory to test understanding of stellar structure and evolution

Introduction

Faint Early Sun and Standard Solar Models

Introduction

The standard model suggests early solar luminosity was 70% of L_{sun}

Feuler, G. Review of Geophysics 2012, 50, 2011RG000375.

Constraining the luminosity of the Sun – Early Earth

Introduction

Liquid water on earth can be explained by a more luminous early sun

Constraining the luminosity of the Sun – Early Earth

Introduction

Liquid water on earth can be explained by a more luminous early sun

Constraining the luminosity of the Sun – Early Mars

Introduction

- Geomorphological evidence for water (Carr 1996, Malin & Edgett 2000, 2003)
- Minerals that require water to form
 - Clay/phyllosilicates
 (Poulet *et al.* 2005, Bibring *et al.* 2006, Ehlmann *et al.* 2011)
 - Sulfates (Gendrin *et al.* 2005, Squyres *et al.* 2004)
 - Opaline silica (Squyres *et al.* 2008)
 - Carbonates (Ehlmann *et al.* 2008, Boynton *et al.* 2009, Morris *et al.* 2010)
 - Chloride minerals (Osterloo *et al.* 2008)
- Thick CO₂ atmosphere cannot account for liquid water

(Forget et al. 2013)

Liquid water on Mars can be explained by a more luminous early sun

Constraining the luminosity of the Sun – Early Mars

Introduction

Liquid water on Mars can be explained by a more luminous early sun

Constraining the mass of the Sun – Early Earth & Mars

Earth provides an upper limit and Mars a lower limit on solar luminsity

Introduction

Helioseismology and elemental abundances provide information about the solar interior

Constraining the Initial Mass of the Sun – Wind from solar-like stars

Introduction

- Stellar observations of Mass Loss
 - Direct observation of mass loss less than $10^{-9}M_{\odot}$ yr ⁻¹ is difficult (Brown *et al.* 1990)
 - Indirect observation possible (B. Wood et al. 2002, 2005)
 - HI Lyα line observations
 - · Mass loss decreased with time

Our mass loss rates employed are 1-2 orders of magnitude larger

Input physics into our solar model

- One-dimensional model
- Initial homogeneous composition
- Neglect rotation and magnetic fields
- Simple surface boundary conditions
- No additional mixing or structural changes $_{1.3}$ t = 0.24 Gyr, H₂O(I) on Earth t = 0.74 Gyr, H₂O(I) on Mars
- Mass loss (Exponentially-decreasing)

By changing the initial solar mass, the luminosity history is tuned

Mass Loss Constraints

Can mass loss improve agreement with helioseismic data?

0.015 GN93 AGS05 c_s Difference (Sun-Model)/Sun ML107 ML115 0.01 ML130 0.005 0 The strength -0.005 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 Radius (R_{sun})

Better sound speed agreement for mass loss models with new abundances

Constraints

Comparing the luminosity for early Earth and Mars

Mass Loss Constraints

Initial solar mass should be between 1.07 and 1.15 M_{sun}

Planets and stellar observations place constraints on the solar evolution model

- Constraints based on solar system cannot be ignored
- ML107 & ML115 bound future models
 - Constraints set by Earth
 - Constraints set by Mars
 - Constraints set by stellar observations

Planetary evidence needs to be used in solar modeling

Future directions for solar modeling efforts at LANL

Summary

Acknowledgements and Questions?

- I would like to acknowledge:
 - Ebraheem Farag
 - XTD-IDA
 - Chris Fontes
 - Los Alamos Center for Theoretical Astrophysics

Manuscript submitted to Solar Physics

Summary