Spatially-Resolved Separation of Thermal Contribution from Radio Continuum Emission in Edge-on Galaxies

> Carlos J. Vargas New Mexico State University November 3, 2017

A Joint Effort!

CHANG-ES Thermal Separation Working Group

- Rich Rand (UNM)
- Silvia Carolina Mora Partiarroyo (MPIfRA)
- Philip Scmidt (MPIfRA)
- Rene Walterbos (NMSU)
- Daniel Wang (UMass Amherst)

Submitted to ApJ in October

Radio Continuum Emission

Independent Tracer Of Thermal Emission

- Free-free emission directly linked to recombination, star formation
- Most observable recombination line: $\ensuremath{\mathsf{H}\alpha}$

Ha Extinction Correction

- $H\alpha$ emission extincted by dust
- 22 µm infrared emission from dust used to correct for extinction $\widehat{F}_{\sigma_{ft}}^{1.00}$

$$\left(\frac{\text{SFR}_{\text{mix}}}{M_{\odot} \text{ yr}^{-1}}\right) = 5.37 \times 10^{-42} \left[\frac{L_{\text{H}\alpha}^{\text{obs}} + 0.031\nu L_{\nu}(24\,\mu\text{m})}{\text{erg s}^{-1}}\right] \overset{\text{W}}{\text{erg s}^{-1}} 0.01 \qquad (R> = 1.21) \overset{\text{W}}{\text{of the set of the$$

Thermal Prediction

- Mixture H α + 22 μ m
- 22 µm Only
- Test sample, 3 galaxies: NGCs 891, 3044, 4631

$$\left(\frac{\mathrm{SFR}_{\nu}^{\mathrm{T}}}{\mathrm{M}_{\odot}\mathrm{yr}^{-1}}\right) = 4.6 \times 10^{-28} \left(\frac{\mathrm{T}_{\mathrm{e}}}{\mathrm{10^{4}K}}\right)^{-0.45} \left(\frac{\nu}{\mathrm{GHz}}\right)^{0.1} \left(\left(\frac{\mathrm{L}_{\nu}^{\mathrm{T}}}{\mathrm{erg}\cdot\mathrm{s}^{-1}\mathrm{Hz}^{-1}}\right)\right)$$

For more on comparison between methods see last year's talk, or talk to me		NGC 891	NGC 3044	NGC 4631
	SFR (M _o /yr)	1.55	0.95	1.33
	Н-Туре	Sb	SBc	SBcd
	D (kpc)	33.6	26.0	32.3

Results – NGC 891

Mixture

$22 \ \mu m$ Only

 TIR from IRAS 25, 60, 100 µm, and Dale & Helou 2003 definition plus SFR from Kennicutt 98

- After correcting for difference in IMFs, newer LTIR calibration, and low LTIR/L24 sample, the difference is a factor of ~1.6
- No inclination dependence...?

What if we go further into the IR?

Expanded Sample – IRAS RBGS

- IRAS Revised Bright Galaxy Survey (Sanders+03)
- Contains 629 galaxies (23 CHANG-ES galaxies)
- 12, 25, 60, 100 µm
- Compared at f25/f100 ratios for edge ons (50) vs. face ons (~150)
- Main result: f25/f100 lower in edge ons by factor of 1.36
- Complex, galaxy dependent morphology
- This is by far the most convincing evidence of extinction

Extra factor takes into account average global extinction of 22 micron emission in edge-on galaxies

Non-thermal Spectral Index, a=0.042

Non-thermal Spectra Index Behavior

Region	NGC 891	NGC 3044	NGC 4631
+2 kpc	-1.16 ± 0.28	-0.82 ± 0.17	-1.18 ± 0.28
$+1 \ \rm kpc$	-0.98 ± 0.24	-0.75 ± 0.16	-0.98 ± 0.24
$0~{\rm kpc}$	-0.73 ± 0.18	-0.75 ± 0.16	-0.72 ± 0.17
$-1 \mathrm{~kpc}$	-1.02 ± 0.25	-0.77 ± 0.16	-0.95 ± 0.23
$-2 \ \rm kpc$	-1.17 ± 0.28	-0.89 ± 0.19	-1.24 ± 0.30

 $\boldsymbol{\alpha}_{_{nth}}$ steepens with vertical distance from the disk

Conclusions

- Inconsistencies in thermal morphologies of edge-on galaxies likely due to 22 micron extinction
 - Average global 22 micron extinction ~1.36
 - Uncertain electron temperature, metallicity in the central disk may also play a role
- We see clear evidence for steepening nonthermal spectral index with vertical distance
 - Cosmic ray aging