Constraints on Cosmic Ray Acceleration Efficiency in Balmer Shocks of the Two Young Type Ia Supernova Remnants in the Large Magellanic Cloud

> **The 33rd Annual New Mexico Symposium** Luke Hovey: November, 3 2017 Ihovey@lanl.gov **Collaborators:**

Kris Eriksen -Jack Hughes -

Los Alamos National Laboratory **Rutgers University Center for Computational Astrophysics, Flatiron Institute Curtis McCully - Las Cumbres Observatory Global Telescope** University of California, Santa Barbara Viraj Pandya – UCO/Lick Observatory

University of California, Santa Cruz

Two Shock Structure

https://youtu.be/jA0v1Mh_Oq8

Balmer-dominated Shocks

Balmer-dominated Shocks

Balmer-dominated Shocks

Measuring Global Shock Speed

Results from Hovey, Hughes, and Eriksen 2015

Measuring Global Shock Speed

Results from Hovey, Hughes, and Eriksen 2015

Signatures of Efficient CR Acceleration

Previous Claims of Temperature Equilibration in SNR 0509-67.5

Helder et al. 2010

4000

6000

IL IS PARTY IN A DAY

-2000

o

2000

-4000

4000

6000

2000

-4000

-2000

SNR 0509-67.5 and 0519-69.0 Longslit Locations

SNR 0519-69.0 Spectra

SNR 0509-67.5 FORS2 Spectrum

SNR 0519-69.0 SALT Spectra

Comparing Shock Speeds to Broad H α Widths

Constraining CR Acceleration Efficiencies

CR ACCELERATION EFFICIENCY LIMITS AND TEMPERATURE EQUILIBRATION RATIOS FOR 0509-67.5 AND 0519-69.0

Extraction Region	$\epsilon_{\rm CR;upper}^{(1)}$	β_{upper} (2)
0509-67.5 NE	0.13	0.42
0509-67.5 SW Outer	0.29	•••
0509-67.5 SW Inner 1	0.28	•••
0509-67.5 SW Inner 2	0.33	
0509-67.5 SW Inner 3	0.00	
0519-69.0 Slit 1 North	0.21	0.84
0519 - 69.0 Slit 1 South	0.35	•••
0519-69.0 Slit 2 North	0.46	
0519-69.0 Slit 2 Middle 2	0.19	0.56
0519-69.0 Slit 2 Middle 1	0.41	•••
0519-69.0 Slit 2 South	0.13	0.38
$0519{-}69.0$ Smith '91 East	0.66	•••
0509 - 67.5	0.06	0.47
0519 - 69.0	0.11	0.55
All Points	0.07	0.25

NOTE. — (1) - Upper limits at 95% confidence for CR acceleration efficiency assuming no equilibration between electron and ion temperatures ($\beta = 0.01$).

(2) - Upper-limit values at 95% confidence for β , unless it cannot be unconstrained between the limits of $0.01 \le \beta \le 1$.

 $\epsilon_{CR} = \frac{P_{CR}}{\rho_{0,tot} V_{SH}^2}$ $\epsilon^* = \frac{P_{CR}}{\rho_{0,ion} V_{SH}^2} \equiv \frac{\epsilon}{\chi}$ SNR 0509-67.5 ε^{*}<12% SNR 0519-69.0 ε^{*}<22% **Full Ensemble** ε*<14%

Comparison to Tycho's SNR

- Using hydrodynamic modeling, Slane et al.
 (2014) concluded that:
 - ~16% of KE has been converted into relativistic particles
 - $-\approx 11\%$ of these particles have escaped as CRs
 - Diffuse shock acceleration efficiency of 26%

Comparison to Tycho's SNR

- Using hydrodynamic modeling, Slane et al.
 (2014) concluded that:
 - ~16% of KE has been converted into relativistic particles
 - ≈11% of these particles have escaped as CRs
 - Diffuse shock acceleration efficiency of 26%

<u>SNR 0509-67.5</u> ε^{*}<12% <u>SNR 0519-69.0</u> ε^{*}<22% <u>Full Ensemble</u> ε^{*}<14%

Comparison to Tycho's SNR

Conclusions

- Bright BD shocks are regions of minimal CR acceleration efficiencies
- SNRs 0509-67.5 and 0519-69.0 accelerate CRs with significantly lower efficiency than Tycho's Remnant
- Further work needed to break degeneracy between post-shock temperature ratios and CR acceleration efficiencies

