Surveying the TeV Gamma-ray Sky with the **High Altitude Water Cherenkov Gamma-ray Observatory**

Chad Brisbois For the HAWC Collaboration **New Mexico Symposium** Nov 3rd 2017

High Altitude Water Cherenkov Gamma-Ray Observatory

Cosmic-rays Discovered in 1912 by Victor Hess

Electroscopes discharge faster higher in the atmosphere

lonizing radiation comes from space!

Cosmic-rays are charged particles, direction determined by **B** fields Gamma-rays point back to the source

Cosmic-rays vs Gamma-rays

Gamma-rays are the highest energy light Ν Ν Particles Radio Ultraviolet Gamma ray Microwave Infrared Visible X-ray 10⁻¹² 10⁻² 0.5×10⁻⁶ 10^{-5} 10^{-8} **10⁻¹⁰** 10³ ~10⁻¹⁸ - 10⁻²⁰ m Ø ~1 - 100 TeV Needle Point Protozoans Atomic Nuclei Buildings Humans Butterflies Molecules Atoms ~10²⁶ - 10²⁸ Hz 10¹² **10¹⁵ 10¹⁶** 10¹⁸ 10²⁰ 10⁸ ~10²⁵ - 10²⁷ K 1 K 10,000 K 10,000,000 K 100 K 9,727 °C ~10,000,000 °C

Particle Accelerators make Gamma-rays

Nature's accelerators bring cosmic-rays to kinetic energies up to 3(10²⁰) eV! ~50 Joules

LHC ~7(10¹²) eV

Particle Accelerators in Nature

Pulsar Wind Nebulae Supernova Remnants

xtragalacti

Galactic

Active Galaxies

Short y-ray Bursts

Pulsars

Long y-ray Bursts

Starburst Galaxies

Fermi

Angular Resolution

Pico de Orizaba 5600 m

22,000 m² air shower array 300 Water Cherenkov detectors (WCD) 200,000 liters of purified water per WCD 4 sensors (Photo-Multiplier Tubes) per WCD Completed March 2015

HAWC

HAWC 4100 m Large Millimeter Telescope

> Sierra Negra 4800 m

> > 🗍 🤍 📰 🏭

Google

Extensive Air Showers

Interview with an Air Shower... Q Where did the air shower land? Which direction did it come from? What is its energy? Is it a gamma-ray?

Interview with an Air Shower... Q Where did the air shower land? Which direction did it come from? What is its energy? Is it a gamma-ray?

Event Reconstruction Gamma/Hadron Separation

Angle Information (Time)

Event Reconstruction

Location Information (Light level)

Collect 20,000 air showers /second ~3 TB /day

Rule of Thumb: 10³ - 10⁴ air showers per gamma-ray

Need to get Gamma/Hadron separation right!

Extensive Air Shower Facts:

Gamma/Hadron Separation

Gamma-ray event

High charge hits far from core

Axial symmetry

Cosmic-ray event

17 Month Skymap

Markarian 501

Galactic Plane

Markarian 421

Crab Nebula

Geminga

0

Abeysekara, ApJ 843, 40 (2017)

In Galactic Coordinates...

Active Galactic Nuclei

Galactic Plane

We see ~40 sources 10 new sources at TeV energies ~2/3 of the sky observed each day

Pulsar Wind Nebula

High Uptime enables continuous monitoring

1 Altitude Water Cherenko

Observations of Flaring Sources

April 5th, 2016

April 7th, 2016 April 6th, 2016 HAWC detection of increased TeV flux state for ATel #8922 Markarian 501

April 8th, 2016

HAWC monitors entire sky for flaring sources

LIGO/VIRGO Neutron Star Merger GW 17082017

~9 hours after event GW location was in HAWCs field of view

Optical >Observations Before & After

Star is at the GBM position with GBM error of 11 deg (68% containment)

B. P. Abbott *et al* 2017 *ApJL* **848** L12

We see sources >50, >100 TeV 0.5 degree smoothing applied

Highest Energy Sky

Outrigger Extension Array

Projected Completion by March 2018

- Will increase HAWC sensitivity above 50 TeV by factor of ~4
- Improvement primarily due to better core location determination

Permit approved in Late August ~1/6 deployed as of this week

The HAWC Collaboration Halloween 2017 Cocoyoc, Mexico

Thanks!

