Protoclusters in the Milky Way: Physical properties of massive starless & star-forming clumps from the BGPS

Brian Svoboda (Arizona)
Y. Shirley (Arizona)
C. Battersby (Harvard)
E. Rosolowsky (Alberta)
T. Ellsworth-Bowers (Colorado)
A. Ginsburg (ESO)
J. Bally (Colorado)
N. Evans (Texas)
J. Glenn (Colorado)
& the BGPS Team

Cygnus X in BGPS & WISE Image Credit: Adam Ginsburg

New Mexico Symposium – Nov 4, 2016

Many fundamental questions remain open in high-mass star and cluster formation

Initial protocluster physical conditions Inflow in the mass growth of protoclusters Fragmentation before star formation occurs

<u>Future is now</u>: Galactic plane surveys now exist to study pre-protoclusters / starless clumps

Image Credit: ESA, NASA, JPL-Caltech, S. Carey, A. Ginsburg, Dempsey et al. (2013)

<u>Future is now</u>: Galactic plane surveys now exist to study pre-protoclusters / starless clumps

Image Credit: ESA, NASA, JPL-Caltech, S. Carey, A. Ginsburg, Dempsey et al. (2013)

<u>Indicators</u>: Blind surveys of star formation activity from the radio to mid-IR, half of clumps are starless

2238 (48%) Starless Candidate 2446 (52%) Protostellar 1043 (22%) 70 um Unique Hi-GAL 70 um visual inspection 1022 (22%) Mid-IR Red MSX, EGO, Robitaille+08 556 (12%) Water Maser GBT, Arcetri, HOPS 296 (6%) Methanol Maser MMB, Arecibo, Pestalozzi+05 **170 (4%) UCHII CORNISH**

Only 70 um, deeply embedded candidates

Includes over 2000 targeted GBT observ.

Uniquely OB stars, not all clumps may produce these indicators

~2200 starless clump candidates identified candidates: 90% complete at 50-100 L_{sun}

High Mass SCC example: 1000 M_{sun}, 11 K, 1 pc, 4.5 kpc

<u>NH₃ Gas Temperatures</u>: Increasing temperatures with star formation activity, median for SCC = 13.9 K.

<u>Property estimation</u>: MC samples are drawn for each clump based on PDFs for distance, flux, and temperature

Example: 1 Clump with 10,000 Monte Carlo mass samples

<u>Mass Segregation</u>: Increase in median mass from 230 to 600 from Starless to Protostellar. Evidence for growth?

Clump total mass (M_{sun}) from MC samples that draw from flux, temperature, and heliocentric distance.

Cannot be due to:

- Incompleteness in distance or SF indicators
- Mass incompleteness for starless candidates
- NH₃ underestimate of kinetic temperature
- Isothermal temperature assumption

Growth only scenario 200 – 400 M_{sun} / Myr

Lifetime only scenario Starless lifetime ~ M^{-0.4}

Infall survey towards 100 SCCs suggests this is unlikely (Calahan et al. in prep.)

Growth only scenario 200 – 400 M_{sun} / Myr Lifetime only scenario Starless lifetime ~ M^{-0.4}

<u>Time Scales</u>: SCC phase short, less than 0.5 Myr

Class II Methanol Maser: Absolute timescale between 0.06 to 0.09 Myr (van der Walt 2005; Battersby et al., in press)

High-mass starless phase < 0.5 Myr

Assumes no clump growth

Extrapolated to \sim 200 M_{sun}, starless phase would be 2-3 the free-fall time

<u>Time Scales</u>: SCC phase short, less than 0.5 Myr

Class II Methanol Maser: Absolute timescale between 0.06 to 0.09 Myr (van der Walt 2005; Battersby et al., in press)

High-mass starless phase < 0.5 Myr

Assumes no clump growth

Extrapolated to \sim 200 M_{sun}, starless phase would be 2-3 the free-fall time

<u>ALMA Survey</u>: 12 highest mass SCCs within 5 kpc

Constraining the core mass function (CMF) down to $0.3 M_{sun}$.

Turbulent or thermal Jeans? Do we observe massive starless cores?

Identifying hitherto undetected indicators of star formation.

Deuteration, stability, and kinematics...

40" ~0.8 pc (3000 AU resolution)

Svoboda, Shirley et al. in prep.

<u>ALMA Survey</u>: 12 highest mass SCCs within 5 kpc

Significant level of fragmentation observed, consistent with thermal Jeans mass and length

10/12 show SF! Existing Galactic surveys are incomplete to low-mass SF. Requires interferometric followup.

Coeval low-mass cores but no HMSF, consistent with LMSF first?

Svoboda, Shirley et al. in prep.

Summary & Conclusions

- ~2200 blindly identified starless clump candidates (SCCs): large & robust sample for followup
- SCCs are colder, lower mass, less turbulent, less concentrated, smaller, less dense, and lower column density than protostellar clumps. Majority (75%) of clumps are gravitationally bound.
- Increase in median mass is suggestive of growth via infall or a decreasing lifetime with mass.
- Timescale for high-mass SCCs < 0.5 Myr with no single value. Low-mass SCCs phase longer than free-fall time.
- ALMA surveys to study the fragmentation and kinematics of the highest mass SCCs.

	HC.	463	Her	WA HC?	ROS	150 RMS	EGO	120	CH2	H UCH	ý
HCO	1847				117 0.127	2 0.015	0 0.000	17 0.031	1 0.003	0 0.000	
AC.3		665			124 0.134	1 0.008	1 0.014	46 0.083	4 0.013	1 0.006	
e 18th			1126		365 0.396	21 0.158	$\begin{array}{c} 15\\ 0.208\end{array}$	166 0.299	57 0.191	8 0.047	
HC 2				1044	316 0.343	109 0.820	56 0.778	327 0.588	236 0.792	161 0.947	
- 1 0	117 0.063	124 0.186	365 0.324	316 0.303	922	$\begin{array}{c} 60\\ 0.451 \end{array}$	42 0.583	221 0.397	124 0.416	59 0.347	
ROS	2 0.001	1 0.002	21 0.019	109 0.104	60 0.065	133	10 0.139	60 0.108	57 0.191	19 0.112	
EGO	0 0.000	1 0.002	15 0.013	56 0.054	42 0.046	10 0.075	72	54 0.097	43 0.144	9 0.053	
1420 1420	17 0.009	46 0.069	166 0.147	327 0.313	221 0.240	60 0.451	54 0.750	556	184 0.617	103 0.606	0.
120H	1 0.001	4 0.006	57 0.051	236 0.226	124 0.134	57 0.429	43 0.597	184 0.331	298	70 0.412	
Op.	0 0.000	1 0.002	8 0.007	161 0.154	59 0.064	19 0.143	9 0.125	103 0.185	70 0.235	170	

<u>Completeness</u>: 70 um completeness depends on high or low background, but small luminosity limit

<u>Distance PDFs</u>: A novel Bayesian approach to resolving heliocentric distances

Image Credit: Ellsworth-Bowers+ (2013)

Image Credit: Ellsworth-Bowers+ (2013, 2015a)

<u>Distance PDFs</u>: Group distances are similar. Does not suggest strong distance bias.

<u>Contamination</u>: Far-IR 70 um much more effective indicator of deeply embedded YSOs without contamination from evolved stars.

Severe contamination in 24 um data from evolved stars More than 80% of clumps are LOS associated to 24 um 70 um is a superior indicator of deeply embedded YSOs

<u>Flux Density</u>: Lower flux clumps more frequently starless, but Full and Distance samples similar.

<u>Size Linewidth</u>: No observed size-linewidth trend for SCCs, but protostellar consistent with Larson.

Spearman rank correlation coefficients of 0.24 and 0.50. Ammonia observations corrected for optical depth show better agreement than HCO+ (Schlingman et al. 2011, Shirley et al. 2013).

<u>Virial parameter</u>: More than 75% of clumps in "gravitationally bound", no strong dependence on mass.

Population of SCCs shows similar distribution of virial parameters, without a large difference in fraction of "unbound" clumps. While sub-virial, 50 uG required to support typical clump to collapse (cf. Kauffmann et al. 2013; Pillai et al. 2015) <u>Astrohysical Cuts</u>: Remove low-mass, low-density, and/or unbound objects. Mass difference robust.

Cloud-to-clump infall of **200 to 400 solar masses per Myr** (over 0.8 Myr)

~ 1000 Msun / Myr (high-mass):

Battersby et al. (in prep.) Peretto et al. (2013) Schneider et al. (2010)

~ 100 Msun / Myr (low-mass): Kirk et al. (2013) Fernandez-Lopez et al. (2014) Palmeirim et al. (2013)

No large, systematic samples exist, but inflow rates required are reasonable given existing observations.

<u>Time Scales</u>: Several of methods generally point to short SCC phase-lifetimes, less than 0.5 Myr

IMF: Kroupa IMF (Kroupa 2001) SFR: 1.9 ± 0.4 M_{sun} yr⁻¹ (Chomiuk & Povich 2011) Galactic population of clumps is in steady state

$$\epsilon_{\rm SF} M_{\rm clump} = \frac{\int_{0.08}^{150} N(M) M dM}{\int_{M_{\rm max}}^{150} N(M) dM}$$
$$M_{\rm max} \approx 20 \,\mathrm{M}_{\odot} \,\left(\frac{\epsilon_{\rm SF}}{0.3} \frac{M_{\rm clump}}{1064 \,\mathrm{M}_{\odot}}\right)^{1/1.3}$$
$$\tau_{\rm clump} = \frac{N(M > M_{\rm max})}{\mathrm{SFR}} \frac{\langle M \rangle}{P(M > M_{\rm max})}$$

98 SCCs Distance Sample 224 SCCs Full Sample 1445 SCCs Galactic Total SCC Lifetime 0.2 – 0.3 Myr <u>Virial parameter</u>: More than 75% of clumps in "gravitationally bound", no strong dependence on mass.

Median α = 0.75

75% with α < 2

Same for starless and protostellar

To virialize would need 50–100 uG (see Pillai+ 2015)