Correcting F_{10.7} for use in Ionospheric Models

Sam Schonfeld¹

Stephen White², Rachel Hock-Mysliwiec², James McAteer¹

¹New Mexico State University ²Air Force Research Laboratory

AFOSR FA9550-15-1-0014, Career Award GR0004287, New Mexico Space Grant

4th November, 2016

Conclusion

- Coronal plasma variation over the solar cycle
 - Discontinuity between solar minimum and maximum
- F_{10.7} reproduction
 - Time variable contribution from gyroresonance and bremsstrahlung emission
 - Non-linear relationship between EUV and $F_{10.7}$
- Future

Compare with and correct ionospheric model input

Thank You

Predicted Radio Bremsstrahlung

10.7 cm (2.8 GHz)

193 Å

131 Å

171 Å

94 Å

Observations

- Radio data
 - Karl G. Jansky Very Large Array (VLA)
 - 17 of 27 antennas
 - Eight hour integration
 - Seven pointing mosaic
 - S-band 2—4 GHz coverage
 - 10.7 cm = 2.8 GHz
- EUV data
 - Atmospheric Imaging Assembly (AIA)
 - 60 second cadence
 - Six coronal EUV bands

Strongly Polarized Regions

Region 10

Left: Image = bremsstrahlung Contours = radio intensity

Right:

Grayscale = photospheric magnetic field Contours = radio circular polarization

Region 15

Strong Polarization Examples

Region 3

Region 4

Weak Polarization Examples

NS from sun center [arcsec]

Region 17

Differential Emission Measure

- Emission Measure (EM)
 - $\text{EM} \propto \int n_e^2 \mathrm{d}s \ \left[cm^{-5} \right]$
 - Controls strength of collisional processes
 - Bremsstrahlung emission
 - Collisionally excited atomic emission
- Differential Emission Measure (DEM)
 - Emission measure as a function of temperature

1: Calculating the DEM

$$Flux_i = \sum Resp_i(T) \times DEM(T) \times \Delta T$$

- Observe optically thin medium at different temperatures
- Invert set of observations to determine necessary plasma structure
- No analytic solution
 - MCMC type forward model
 - Direct inversion

F_{10.7} Generation Mechanisms

- Bremsstrahlung
 - Active regions and plage
 - Free-free electron-ion interactions
 - Unpolarized
 - Traces density
- Gyroresonance
 - Active region cores
 - Electrons spiraling around magnetic fields
 - Circularly polarized
 - Traces magnetic field

The Mechanism Matters

- Bremsstrahlung is generated by collisions
 - Collisionally excited atomic emission lines emit EUV
- Gyroresonance results from magnetic fields
 No magnetically driven emission in EUV
- Gyroresonance is a contaminant when F_{10.7} is used as an EUV proxy
 - $F_{10.7}$ is a direct input to ionosphere models
 - Typical density errors of ≈10% (Bowman et al. 2008)
- Gyroresonance fraction unclear

Recent Studies

- Time series analysis -> gyroresonance dominated
- Imaging spectral index -> bremsstrahlung dominated

How We Separate Gyroresonance

