Lyα Blobs: Seeds of Galaxy Groups

Agnar Hall November 4, 2016 New Mexico Symposium

Outline

- intro to Lyα blobs
- background
- our blobs
- detecting overdensities
 - \circ method
 - \circ results
- constraining membership
 - o motivation/method
 - \circ results
- future work
- conclusions

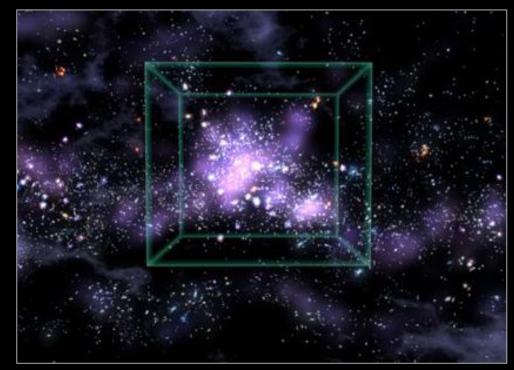


Image credit: University of Tokyo Kiso Observatory (via The Daily Galaxy)

What are giant Lyα blobs?

- Cosmic web should glow in Lyα:
 - photoionization by
 AGN and/or star formation
 - gravitational cooling
 - scattering
 - galactic winds and shocks
- This glow is typically too faint to observe...
- Nodes of cosmic web are brighter
 - \rightarrow giant Ly α blobs!

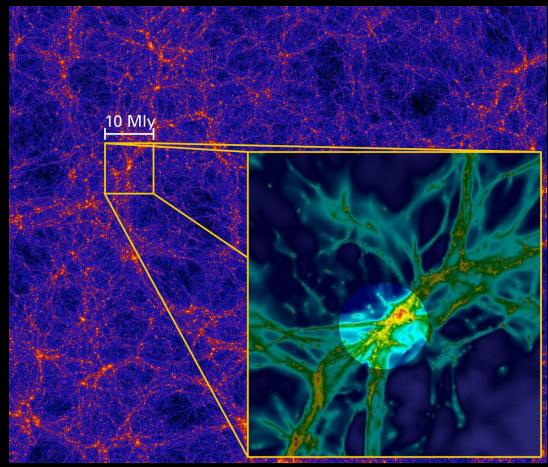


Image credit: Anatoly Klypin (NMSU) & Joel Primack (UCSC), inset by Sebastiano Cantalupo (UCSC)

What are giant Lyα blobs?

- >~100 kpc across
- found at roughly 1 < z < 6
- extremely luminous in Lyα (~10⁴² - 10⁴⁴ erg s⁻¹)
- ~30-some blobs currently known (first detection 1997)
- complex morphologies
- powering mechanisms debated
- contain obscured AGN and/or star-forming galaxies

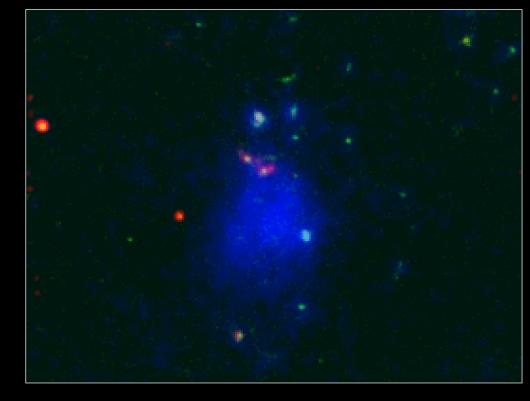
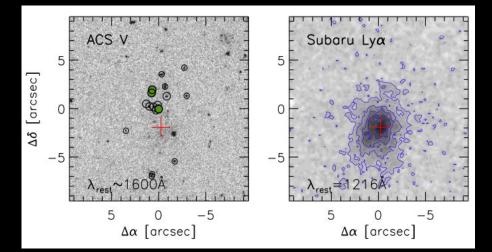



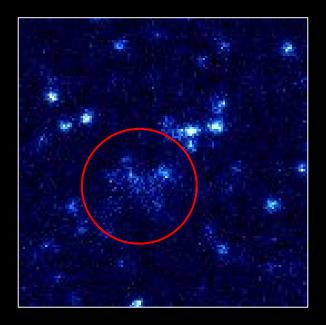
Image credit: Moire Prescott & Arjun Dey (2010)

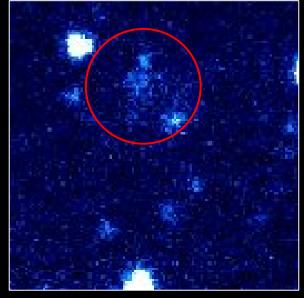
- overdense?
 - individual blobs have been found to be overdense
 - \circ statistically overdense? \rightarrow purpose of this work

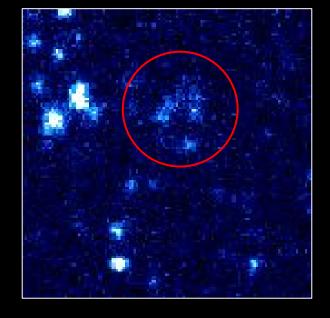
Background

- LABd05: Prescott et al. 2012b
 examined substructure
- found to be overdense by factor of at least ~4
- similar method used in this work

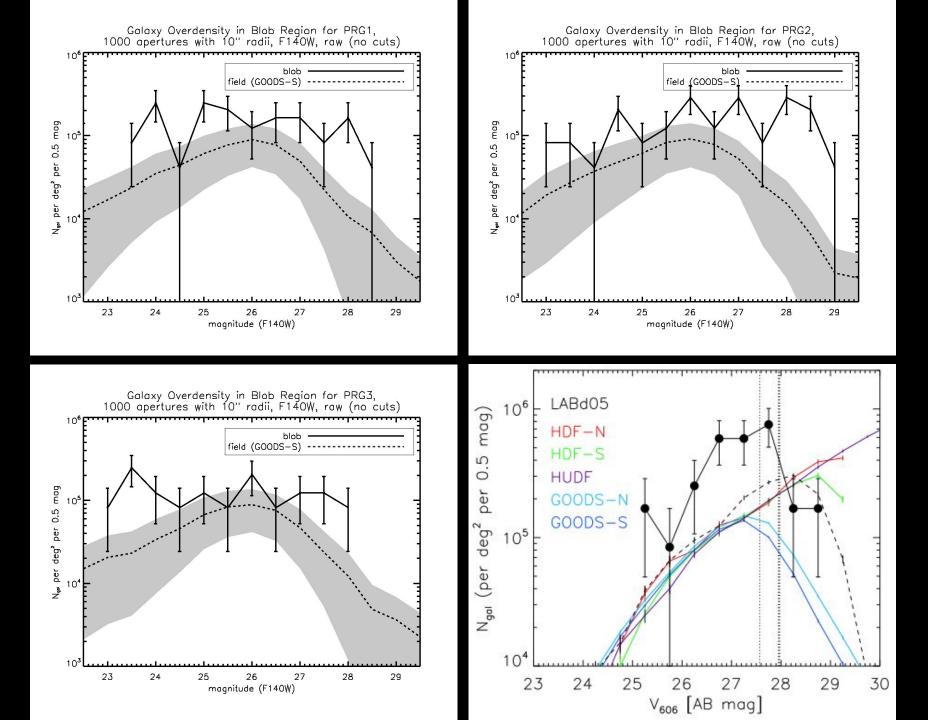
LABd05 galaxies and blob from Prescott et al. 2012b


- MMT: blobs PRG1, PRG2, PRG3 found in NDWFS Boötes field
- confirmed spectroscopically (Prescott et al. 2012a)
- HST: images taken in 3 bands for each blob (WFC3-UVIS)
- bands picked to bracket the Balmer/4000 Å break

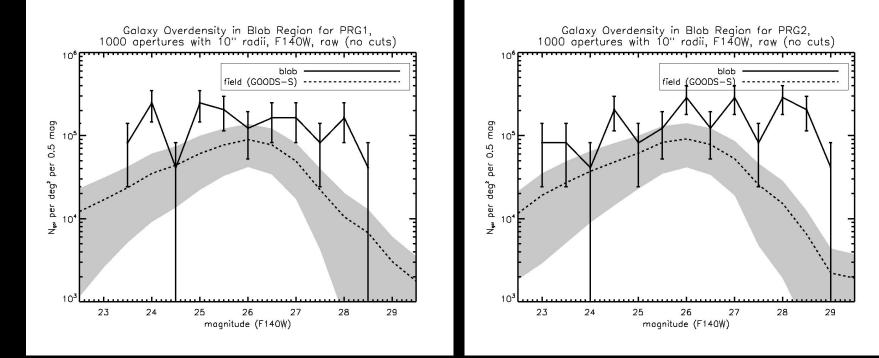

Meet the blobs!

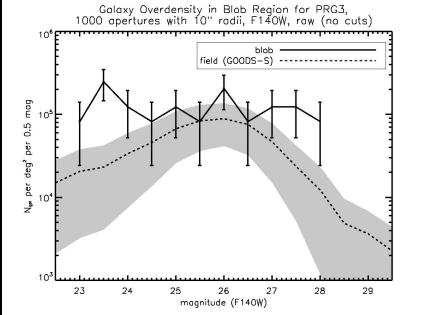


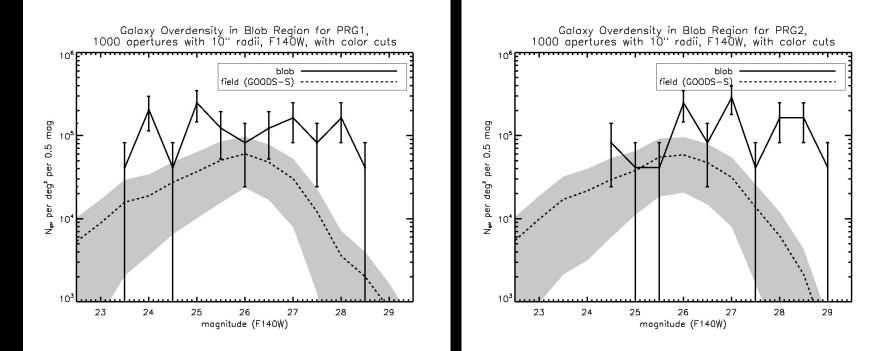
PRG3

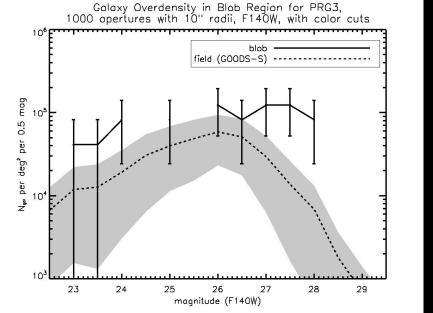


- z = 1.67
- Lyα diameter = 78.3 kpc
- isophotal area ~3100 kpc²
- z = 2.27
- Lyα diameter = 99.0 kpc
- isophotal area ~7000 kpc²
- z = 2.14
- Lyα diameter = 74.4 kpc
- isophotal area ~5500 kpc²


Detecting Overdensities


- blob density
 - place aperture on blob (radius of 10")
 - count up galaxies inside aperture
- field density: GOODS-S (3DHST)
 - place random apertures all over image
 - count up galaxies in each aperture
 - calculate density in each aperture
 - average all apertures for final field density
- results? (drumroll...)


Constraining Membership


- all 3 blobs display an overdensity
- this is ALL galaxies in image, though... want to narrow down membership
- need to exclude inconsistent redshifts
- don't have spec-z for every galaxy in catalog...
- photo-z? \rightarrow future work (more bands = better)
- for now, a simpler method: **color cuts**
 - narrow sample down to only galaxies with colors consistent with z (blob AND field)

before cuts

after cuts

Future Work

- more blobs!
 - \circ $\,$ there are images and catalogs for other blobs
 - same analysis as PRGs
- determine probability of blob and overdensity being unrelated
 - probability of finding a blob & probability of finding overdensity of this scale
 - How often do we see a similar overdensity WITHOUT a blob?
- improve membership constraints (better cuts)
- compare to simulations
 - see if we can find a "blob" at right z that becomes a galaxy group/cluster by today

Conclusions

- All three blobs display an overdensity compared to the field in raw counts.
- After applying color cuts to narrow down membership of these systems, the overdensities persist.
- This result, combined with those of previous works, suggest that giant Lyα blobs statistically tend to be overdense.
- These objects are likely the progenitors of galaxy groups and clusters - seeds of large scale structure.

Questions?

Supplement: Blob Measurements

	PRG1	PRG2	PRG3
Aperture (arcsec)	1.5×5.04	1.5×7.84	1.0×5.60
$\lambda_{Lylpha,obs} \ ({ m \AA}) \ { m Redshift}$	3249.61 ± 0.39	3971.41 ± 0.13	3813.28 ± 0.90
m Redshift	1.6731 ± 0.0003	2.2668 ± 0.0001	2.1368 ± 0.0007
$F_{Ly\alpha} \ (10^{-17} \ {\rm erg \ s^{-1} \ cm^{-2}})$	44.1 ± 4.0	49.2 ± 1.1	10.2 ± 1.2
$L_{Ly\alpha} \ (10^{42} \ {\rm erg \ s^{-1}})$	8.2 ± 0.7	19.3 ± 0.4	3.5 ± 0.4
$Ly\alpha EW_{rest}$ (Å)	257.1 ± 29.1	127.3 ± 6.3	47.1 ± 6.4
$Ly\alpha FWHM_{obs}$ (Å)	9.19 ± 0.60	8.52 ± 0.19	23.36 ± 7.90
Ly $\alpha \sigma_v ~(\mathrm{km ~s^{-1}})$	361.2 ± 23.7	273.9 ± 6.1	782.1 ± 264.3
$F_{CIV\lambda1550}~(10^{-17}~{ m erg~s^{-1}~cm^{-2}})^{ m a}$	2.1 ± 1.1	1.8 ± 0.8	< 0.8
$F_{HeII\lambda 1640} \ (10^{-17} \ {\rm erg \ s^{-1} \ cm^{-2}})^{\rm a}$	5.8 ± 1.0	1.8 ± 0.9	< 0.9
$F_{CIII\lambda1909} \ (10^{-17} \ {\rm erg \ s^{-1} \ cm^{-2}})^{\rm a}$	4.8 ± 0.9	3.0 ± 1.1	< 1.5
B_W Diameter Along Slit ^b (arcsec)	8.96	10.12	6.72
B_W Isophotal Area ^b (arcsec ²)	40.9	73.2	45.3
B_W Surface Brightness ^b (mag arcsec ⁻²)	27.2	27.0	26.8
Ly α Diameter Along Slit ^c (arcsec)	9.24	12.04	8.96
$Ly\alpha$ Diameter Along Slit ^c (kpc)	78.3	99.0	74.4
Approximate Ly α Isophotal Area ^d (arcsec ²)	43.4	103.7	80.4
Approximate Total $L_{Ly\alpha}^{e}$ (10 ⁴² erg s ⁻¹)	47.2 ± 4.3	170.2 ± 3.7	49.6 ± 6.1
IIPPIOINING I O I I Lya (10 185)		- · · · · · ·	

from Prescott et al. 2012a