# Feedback and accretion toward proto-O-stars

Adam Ginsburg Jansky fellow The stellar IMF is central to (almost) all aspects of astronomy



Nearby cloud observations lead to the hypothesis that the *prestellar* "Core Mass Function" maps to the stellar Initial Mass Function



### Theoretical considerations suggest that stellar thermal feedback is critical for setting the IMF



### A "standard" story of highmass star formation

![](_page_4_Figure_1.jpeg)

Implicit assumptions:

- Isolated evolution
- Core is small compared to cloud
- Accretion stops between 3 & 4
- Arrows go only one way
- Everything is roughly spherical or axisymmetric

# Thermal Feedback around HMYSOs ALMA and JVLA observations

 $\begin{array}{c} H_2CO \ 3_{0,3}-2_{0,2} \\ H_2CO \ 3_{2,1}-2_{2,0} \\ H_2CO \ 3_{2,2}-2_{2,1} \end{array}$ 

#### Gas heating: Thermal (radiative) feedback changes initial collapse conditions

 $\begin{array}{c} H_2CO \ 3_{0,3} - 2_{0,2} \\ H_2CO \ 3_{2,1} - 2_{2,0} \\ H_2CO \ 3_{2,2} - 2_{2,1} \end{array}$ 

H<sub>2</sub>CO thermometry: redder = cooler (maybe)

 $\begin{array}{c} H_2CO \ 3_{0,3} - 2_{0,2} \\ H_2CO \ 3_{2,1} - 2_{2,0} \\ H_2CO \ 3_{2,2} - 2_{2,1} \end{array}$ 

H<sub>2</sub>CO thermometry: redder = cooler (maybe)

 $\begin{array}{c} H_2CO \ 3_{0,3} - 2_{0,2} \\ H_2CO \ 3_{2,1} - 2_{2,0} \\ H_2CO \ 3_{2,2} - 2_{2,1} \end{array}$ 

![](_page_9_Picture_0.jpeg)

A massive hot core

5000 au / 0.025 pc

#### CH<sub>3</sub>OH HNCO Continuum

HII region (VLA Ku-band) contours: the ionizing source is not responsible for the CH<sub>3</sub>OH or (most) of the HNCO enhancement

![](_page_10_Picture_2.jpeg)

CH<sub>3</sub>OH 8<sub>0,8</sub>-7<sub>1,6</sub>

CH<sub>3</sub>OH does not trace outflows: methanol enhancement is circularly symmetric

The warm region is the whole core, not just the outflow cavity

> CO / CO CH<sub>3</sub>OH 8<sub>0,8</sub>-7<sub>1,6</sub>

![](_page_13_Figure_0.jpeg)

The warm gas mass is large, at least hundreds of M  $_{\odot}$ 

![](_page_14_Figure_1.jpeg)

*Forming* MYSOs can heat enough of their surroundings to suppress fragmentation and keep a "food source" available

#### Warm gas: Jeans mass is large

Jeans length is similar to the core size scale: the gas is mostly stable against fragmentation

![](_page_15_Figure_2.jpeg)

## Stable now, but...

- If this gas were in a 'core' in the past, before a star formed, it would be highly unstable
  - $\lambda_J \sim T^{3/2}$ , so at  $T_{mol} \sim 20$ , it was 30 times smaller
- At least on the high-mass end, the prestellar 'core mass function' cannot map to the IMF

![](_page_16_Picture_4.jpeg)

![](_page_16_Picture_5.jpeg)

![](_page_16_Picture_6.jpeg)

### Summary:

- HMYSOs illuminate large, massive cores up to T>200K
  - Current "core" masses are ≥250 M<sub>☉</sub>
- These cores likely did not exist as prestellar cores
- The prestellar CMF->IMF mapping doesn't work high-mass stars

Outflows: there must be disks (but they are small)

![](_page_18_Picture_1.jpeg)

1000 au / 0.005 pc