Inside-Out Planet Formation

Jonathan Tan (U. Florida) Sourav Chatterjee (Northwestern) Xiao Hu (U. Florida) Subu Mohanty (Imperial) Zhaohuan Zhu (Princeton)

NASA Astrophysics Theory Program Royal Society International Exchange Program

Systems with Tightly-packed Inner Planets (STIPs)

Fabricky et al. (2014)

Properties of STIPs

- ≥3 planets per system
- Sizes of ~1-3 $R_{\oplus},$ consecutive planets have

similar sizes or slightly bigger

- Periods from ~1-100 days; peak at ~10-20 days
- Tightly-packed (period ratios near 1.5-3; separations of ~10-20 R_{Hill}), but not on verge of instability
- Mostly non-resonant period ratios, but ~10% just wide of 1st order resonances (mostly 2:1 & 3:2)
- Low dispersion in inclinations (≤3°)
- Wide range of densities
- Occur around tens of percent of (single) stars
- May be the dominant mode of planet formation

Migration or In Situ Formation?

Migration

(e.g., Alibert et al. 2006; McNeil & Nelson 2010; Kley & Nelson 2012)

- Form planets in outer disk

Core Accretion

(c.f. Gravitational Instability) But still many open questions, including the *meter-sized barrier*

- Migration to inner disk

Migration or In Situ Formation?

[AU]

Migration (e.g., McNeil & Nelson 2010; Kley & Nelson 2012)

- Form planets in outer disk
- Type I or Type II migration to inner disk
- Expect pile-ups of orbits near resonances

So mechanisms invoked to prevent trapping in resonances (Stochastic Turbulent Migration: Rein 2012; Eccentricity damping during migration: Goldreich & Schlichting 2014)

and/or move planets out of resonance (e.g., Papaloizou 2011; Lithwick & Wu 2012; Batygin & Morbidelli 2013).

Migration or In Situ Formation?

In Situ Formation: Hansen & Murray (2012, 2013)

- Concentration of solids (~20-100 M_E inside ~1AU) arranged in an inner enriched disk of protoplanets
- They model final stages of
 oligarchic growth of planets (Ida & Lin 1998; Kokubo & Ida 2002)
- Some of the initial protoplanets are already ${>}1M_{\oplus}$
- Orbital evolution with gas leads to orbital architectures that differ from observed systems (Ogihara, Morbidelli & Guillot 2015)

(see also Chiang & Laughlin 2013)

Observational Evidence

Grain Growth in Disks

Overview of Inside-Out Planet Formation Chatterjee & Tan (2014)

Rapid radial drift of cm to m-sized "pebbles" via gas drag. They collect at the pressure maximum at the **dead zone inner boundary (DZIB)**, likely first set by thermal ionization of alkali metals at ~1200K.

Pebbles concentrate in narrow ring. Begin to dominate local gas mass surface density, $\Sigma_p > \Sigma_g$, eventually by factors ~10.

A planet forms from the pebble ring. It grows to then clear a gap, leading to viscous clearing of the inner disk.

With reduced extinction from the inner disk, the DZIB retreats outwards and the process repeats.

Inner, "Vulcan" Planet Mass versus Orbital Radius

 $M_{G} = 5.0 \ \phi_{G,0.3} \ \alpha_{-3} \ r_{0.1AU} \ M_{\oplus}$

 $M_{p,1}/M_{\oplus} = p_0 r_{AU}^{p_1}$ Synthetic planet population with $M_G = 5.0 \ \phi_{G,0.3} \ \alpha_{-3} \ r_{0.1AU} \ M_{\oplus}$ [include Kepler observational biases]

Power law index, p₁, agrees
Dispersion consistent with
being due to density variations
But normalization, p₀, too high

Consistent model if reduce DZIB viscosity: $\alpha_{-3} = 0.2$

Conclusions

Systems with Tightly-packed Inner (Super-Earth) Planets (STIPs) are common. Migration or In Situ Formation?

Inside-Out Planet Formation:

- Radial drift of cm-m sized solids
- Massive "pebble" ring at pressure maximum of dead zone
 inner boundary
- Planet formation & growth from pebble ring
- Planet mass grows until gap-opening
- Gap-opening leads to dead zone retreat
- New pebble ring forms, process repeats

Features of this planet formation model:

- Rapid radial drift of pebbles, i.e., meter-sized barrier, is not a problem for this model.
- Creates ~1-10M_⊕ planets on tightly-packed close orbits, starting from typical disks.
- Predicts flat scalings of planet mass with orbital radius, consistent with observed systems.
- Orbital spacings should be ≥3 Hill radii of inner planet. Spacing from first to second planet should be larger than subsequent spacings, as observed.

• Inner "Vulcan" planet mass vs orbital radius $M_G = 5.0 \ \phi_{G,0.3} \ \alpha_{-3} \ r_{0.1AU} \ M_{\oplus}$, independent of accretion rate. Consistent with observed planets (both scaling and normalization).

How to stop STIP Inside-Out Planet Formation? (Solar System?)

- Outer pressure trap, e.g., due to opacity jump?
- Maintain MRI inner midplane region out to large radii extra ionization due to radionuclides (²⁶AI)?
- Suppress MRI inner region (anti-aligned B-fields leading to Hall Effect suppression)?