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Planet Mass [Earth Mass]
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Most masses are
very uncertain -
derived from
empirical relation:
MpI=M®(RpI/R®)2'06

(Lissauer et al. 2011)
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Fabricky et al. (2014)
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PrOpertieS Of STI Ps Ragozinne (2013 - From Stars to Life)

* =3 planets per system
e Sizes of ~1-3 Re, consecutive planets have

similar sizes or slightly bigger

* Periods from ~1-100 days; peak at ~10-20 days
e Tightly-packed (period ratios near 1.5-3;
separations of ~10-20 Rnii), but not on verge of
instability

* Mostly non-resonant period ratios, but ~10% just
wide of 1st order resonances (mostly 2:1 & 3:2)

* Low dispersion in inclinations (=3°)

* Wide range of densities

e Occur around tens of percent of (single) stars

* May be the dominant mode of planet formation




Migration or In Situ Formation?

Migration
(e.g., Alibert et al. 2006; McNeil & Nelson 2010; Kley & Nelson 2012)

| _ Core Accretion
- Form planets in outer disk ? (c.f. Gravitational Instability)

m But still many open questions,
including the meter-sized barrier

- Migration to inner disk | g o
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Migration (e.g., McNeil & Nelson 2010; Kley & Nelson 2012)

Migration or In Situ Formation?

- Form planets in outer disk

- Type | or Type Il migration to inner disk
- Expect pile-ups
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So mechanisms invoked to prevent trapping in resonances
(Stochastic Turbulent Migration: Rein 2012; Eccentricity damping during migration:
Goldreich & Schlichting 2014)

and/or move planets out of resonance (e.g., Papaloizou 2011; Lithwick
& Wu 2012; Batygin & Morbidelli 2013).

of orbits near resonances =

All pairs _E
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But most STIPs pairs

are non-resonant

(Fabrycky et al. 2014;
Baruteau et al. 2014)




Migration or In Situ Formation?
In Situ Formation: Hansen & Murray (2012, 2013)

- Concentration of solids (~20-100

Me inside ~1AU) arranged in an

iInner enriched disk of protoplanets

- They model final stages of
oligarchic growth of planets (Ida
& Lin 1998; Kokubo & Ida 2002)

- Some of the initial protoplanets
are already >1Me

- Orbital evolution with gas leadsto = ° |
orbital architectures that differ from

observed systems (Ogihara,
Morbidelli & Guillot 2015)
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(see also Chiang & Laughlin 2013)




Observational Evidence

Grain Growth in Disks
CQ Tau

Trotta et al. (2013) '°f

see also, e.g.,

Perez et al. (2012); *
Testi et al. (2014).  °%
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Inward radial drift of dust with respect to gas

HD 163296
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Overview of Inside-Out Planet Formation

Chatterjee & Tan (2014)

Rapid radial drift of cm to m-sized
“pebbles” via gas drag. They collect
o X i amy 2t the pressure maximum at the
dead zone inner boundary (DZIB),
likely first set by thermal ionization
of alkali metals at ~1200K.

Pebbles concentrate in narrow ring.

pebble ring Begin to dominate local gas mass
forms at P max surface density, 2p>24, eventually
by factors ~10.
planet _
formation A planet forms from the pebble ring.

It grows to then clear a gap, leading
to viscous clearing of the inner disk.

(iii) g

With reduced extinction from the
inner disk, the DZIB retreats
outwards and the process repeats.

(iv) dead zone NV ‘
retreat




Overview of Inside-Out Planet Formation
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» Chatterjee & Tan, 2014, ApdJ, 780, 53,
Inside-out Planet Formation

* Hu, Tan & Chatterjee 2014, IAUS, 310, 66,
Pebble Delivery for Inside-Out Planet Formation

» Chatterjee & Tan, 2015, ApJ, 798, L32,
Vulcan Planets: Inside-out Formation of = _
the Innermost Super-Earths

* Hu, Zhu, Tan & Chatterjee, 2015, ApdJ, sub.,
Planet Disk Interaction at the Dead Zone
Inner Boundary




Inner, “Vulcan” Planet Mass

versus Orbital Radius i
=
Ma = 5.0 ¢G,03 a3 ro1au Me | =

_ P1
My i1/ Mg = POT AL
Synthetic planet population with
Ma = 5.0 §G,0.3 a3 ro.1au Me
[include Kepler observational biases]
- Power law index, p1, agrees
- Dispersion consistent with
being due to density variations
- But normalization, po, too high

Consistent model if reduce
DZIB viscosity:
a3=0.2
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Conclusions

Systems with Tightly-packed Inner (Super-Earth) Planets
(STIPs) are common. Migration or In Situ Formation?

pebble ring

Inside-Out Planet Formation: forms atF max

» Radial drift of cm-m sized solids

 Massive “pebble” ring at pressure maximum of dead zone formation
inner boundary . €
e Planet formation & growth from pebble ring
* Planet mass grows until gap-opening

« Gap-opening leads to dead zone retreat 1
* New pebble ring forms, process repeats

Features of this planet formation model:

« Rapid radial drift of pebbles, i.e., meter-sized barrier, is not a problem for this model.

» Creates ~1-10Me planets on tightly-packed close orbits, starting from typical disks.

* Predicts flat scalings of planet mass with orbital radius, consistent with observed systems.
» Orbital spacings should be =3 Hill radii of inner planet. Spacing from first to second planet
should be larger than subsequent spacings, as observed.

* Inner “Vulcan” planet mass vs orbital radius Mg = 5.0 ¢g,0.3 a-3 ro.1au Mo, independent of
accretion rate. Consistent with observed planets (both scaling and normalization).

How to stop STIP Inside-Out Planet Formation? (Solar System?)

 Quter pressure trap, e.g., due to opacity jump?

« Maintain MRI inner midplane region out to large radii - extra ionization due to radionuclides (26Al)?
» Suppress MRI inner region (anti-aligned B-fields leading to Hall Effect suppression)?




