black hole accretion (AGN) & star formation (SF)

20x increase from z = 0 to 2!

due to

more gas (initial supply or accretion)

or

higher efficiency gas → stars , AGN
starbursts – merging ?

ALMA survey of ISM evolution at high z

Rodighiero '11, Sargent etal '12

need to measure gas contents

need: robust and fast measure of ISM

CO – ok , but ...

> CO/H2 conversion factor excitation dependence (often measure high J CO) slow even w/ ALMA (hours per gal.)

alternative, <u>measure dust IR continuum + dust / gas ratio</u>

ALMA cycle 0, 2 & 3 projects (110, 180 and 360 galaxies w/i COSMOS field) emitted SED -- increasing M_{dust}

- peak shifts to longer λ for increased τ (or dust mass)
- flux on long λ tail scales linearly with M_{dust}

R-J tail is optically thin,

calibrate: $L_v / M_{ISM} = \langle \varkappa_v T_d M_{ISM} / M_{dust} \rangle$

<u>local galaxies</u> <u>Milky Way (Planck)</u> <u>SMGs</u>

local galaxies normal SF gal. and ULIRGS w/ total Herschel SPIRE 500 μm fluxes & CO 1-0

<u>z = 2- 3 SMGs</u> with CO (1-0) EVLA + SCUBA 850 μm

for ALMA Bands 3 - 7 predict :

ALMA Cycle 2 – observations --145 galaxies

w/ Sheth, Aussel, <u>Vanden Bout</u>, Capak, Bongiorno, Casey, Laigle, Ilbert, McCracken, Koda, Alvarez-Marquez, Murchikova, Koda, Pope, Toft, Ivison, Sanders, Manohar, Lee, Chu,

detection rates (2 min) -- 3 redshift ranges :

mass

ISM masses vs $sSFR = SFR / M_*$

very similar masses at z = 2 to 1 perhaps a little higher at $z \sim 5$

mass up ot 4×10^{11} M $_{\odot}$!!!

gas mass fraction :

ISM mass fraction :

 $M_{ISM} / (M_{ISM} + M_{stellar})$

individual galaxies : gas masses

ISM masses increase above the main sequence !!

increase in SFRs above the MS due to larger ISM masses

analytic fit :

SFR = 30 ± 12
$$\left(\frac{M_{mol}}{10^{10} M_{sun}}\right)^{1.1 \pm 0.1} \left(\frac{1+z}{3}\right)^{0.8 \pm 0.3} M_{sun} yr^{-1}$$

stacks of galaxies → a single 'linear' SF law

very different than previous work from CO

both used different CO conversion factors for SB and MS

single, linear SF law at z = 1 to 6 and on MS and above MS

$$SFR = 30 \left(\frac{M_{mol}}{10^{10} M_{sun}} \right)^{1.1 \pm 0.1} \left(\frac{1+z}{3} \right)^{0.8 \pm 0.3} M_{sun} yr^{-1}$$
$$\Rightarrow \tau_{ISM \rightarrow stars} = \frac{M_{ISM}}{SFR} \approx 2 - 6x10^8 yrs (2 - 5x faster than z = 0)$$

huge accretion rates replace entire ISM w/i 3-7x10⁸ yrs

why is SF more rapid at z > 1 ??

Note – do not fit for T_d – Lum.- vs mass-weigthed

MS vs above the MS (starbursts ?)

Sample	# 	$\langle z \rangle$	$< M_{\rm mol} > 10^{10} {\rm M}_{\odot}$	$< f_{\rm mol} >$	$< M_{\rm mol}/SFR >$
	gai.		10 10		Gyi
< z >= 1.1					
MS	19	1.16	$6.3 {\pm} 0.8$	$0.42 {\pm} 0.04$	$1.09 {\pm} 0.13$
above MS	25	1.20	$10.6 {\pm} 0.9$	$0.55 {\pm} 0.04$	$0.65 {\pm} 0.07$
all	44	1.19	$9.0{\pm}0.7$	$0.50{\pm}0.03$	$0.84{\pm}0.07$
< z >= 2.2					
MS	29	2.24	10.8 ± 1.3	$0.52 {\pm} 0.03$	$0.61 {\pm} 0.05$
above MS	26	2.28	29.3 ± 3.3	$0.67 {\pm} 0.02$	$0.51{\pm}0.05$
all	55	2.27	$19.5 {\pm} 2.2$	$0.59 {\pm} 0.02$	$0.56{\pm}0.04$
< z >= 4.4					
MS	6	4.28	4.3 ± 0.6	$0.58 {\pm} 0.05$	$0.42 {\pm} 0.04$
above MS	9	4.07	$13.4 {\pm} 2.4$	$0.68 {\pm} 0.06$	$0.24{\pm}0.03$
all	15	4.20	$10.6 {\pm} 2.2$	$0.64 {\pm} 0.04$	$0.31 {\pm} 0.04$
all z					
MS	54	2.07	$8.8 {\pm} 0.8$	$0.49 {\pm} 0.02$	$0.76 {\pm} 0.05$
above MS	60	2.10	18.9 ± 2.3	$0.62 {\pm} 0.02$	$0.53 {\pm} 0.04$
all	114	2.10	14.2 ± 1.3	$0.56 {\pm} 0.02$	$0.64 {\pm} 0.04$

→ most of higher SFR due to increased gas

specific SFR (sSFR) relative to main sequence

stack obs for each z in cells of M_{*} and SFR

z = 2.2 images :

ISM masses increase above the main sequence !!

increase in SFRs above the MS due to larger ISM masses

analytic fits :

gas frac =
$$\frac{M_{mol}}{M_{mol} + M_{stellar}}$$

= 0.30 $\left(\frac{M_{stellar}}{10^{11} M_{sun}}\right)^{-0.02 \pm 0.02} \left(\frac{1 + z}{3}\right)^{0.44} \left(\frac{sSFR}{sSFR_{MS}}\right)^{0.32}$
SFR = 30 ± 12 $\left(\frac{M_{mol}}{10^{10} M_{sun}}\right)^{1.1 \pm 0.1} \left(\frac{1 + z}{3}\right)^{0.8 \pm 0.3} M_{sun} yr^{-1}$