New Mexico Symposium

POSTERS

(1) Pulsar Supraluminal Excitation in Supernova Disruption

John Middleditch, John Singleton, Andrea C. Schmidt, Arzhang Ardavan (T-2, LANL: MPA-CMMS, LANL,; AET-2, LANL, Clarendon Lab., Oxford, UK)

Polarization currents updated faster than c (supraluminally) by rotating, non-aligned, neutron-star magnetospheres, explain the disruption mechanism of supernova progenitors, including the details of SN1987A, gamma-ray bursts, and their afterglows. The directions for which SLIP emission obeys a 1/distance law at great distances are two circles on the sky, perpendicular to, and centered on the rotation axis, with polar angles of arcs in(r/R), where the light cylinder radius, r*mega=c, and R(>r) is the radius of the polarization current excited at the pulsar rotation frequency, Omega. However, the behavior close to r, is more complicated, involving an offset/obliquity of r(1-r/R), moderating nearby intensities.

(2)FRBs: We are realfast! Sarah Burke-Spolaor (NRAO)

(3)A Flexible real-time pulsar processing system for the VLA *Paul Demorest (NRAO)*

(4)Photometric Studies of Rapidly Spinning Decommissioned GEO Satellites Eileen Ryan (NMT)

(5)Flux density calibration of compact low frequency aperture arrays *Frank Schinzel (UNM)*

(6)Wide-Band Off-Axis Polarization Effects Preshanth Jagannathan(NRAO)

(7)New VLA Observations of Massive Protostars: A Search for Jets Viviana Rosero (NMT); Peter Hofner (NMT); Mark Claussen (NRAO)

(8)SWAG: Survey of Water and Ammonia in the Galactic Center *Juergen Ott (NRAO, David Meier (NMT), Betsy Mills (NRAO*

(9)Long wavelength Observations of Thermal Emission from Pluto and Charon with ALMA Bryan Butler (NRAO)

(10) The search for atmospheric waves below the clouds of Jupiter using radio wavelength observations

Richard Cosentino (New Mexico Tech)

We observed Jupiter at 2 cm wavelength with the JVLA in early February 2015. This particular frequency is mostly sensitive to variations in ammonia opacity and probes a depth between 1 and 2 bars pressure; below the visible cloud deck at 0.7 bars. The data acquired was projected into a cartographic map of the planet following the technique of Sault et al. (2004). The horizontal resolution is ~1500 km and we have examined the map for atmospheric waves on these and larger scales.

(11) The Arecibo Zone of Avoidance Survey

T.P. McIntyre, Trish Henning (UNM)

(12)CHILES Con Pol: An ultra-deep radio survey in COSMOS

Chris Hales (NRAO)

(13)Fractal dimension of gas contours in Local Group galaxies *Lorraine Bowman (New Mexico Tech)*