LOFAR Imaging of a Nearby "Wimpy" AGN

Kristina Nyland ASTRON/NRAO

November 6, 2015

New Mexico Symposium

Acknowledgements

Tim Shimwell (Leiden)

Raffaella Morganti (ASTRON)

Brad Frank (ASTRON)

Radio-mode AGN Feedback

- Triggering/fueling?
- Duty cycle?
- Impact on galaxy evolution?
- Importance of feedback from low-power AGNs?

Radio jet interacting with a clumpy ISM

NGC3998: Overview

- D = 13.7 Mpc
- Morphology: S0
- Nuclear activity: LINER
- M_{BH} ≈ 8.93 M_☉
- $M_{stellar} \approx 10.94 M_{\odot}$

NGC 3998

Large-Scale Radio Emission

Evolutionary Clues from HI

Radio Lobes: Key Questions

- Low-frequency radio morphology?
- Evolutionary stage of the radio lobes?
- Connection
 between cold gas
 and radio
 activity?

Frank et al., in prep.

NGC3998: LOFAR Observations

- Cycle 3 (PI: Nyland)
- Bandwidth: 120-168 MHz
- Time: 8 hours (nighttime)

- Date: March 2015
- Pre-processing pipeline
- 38 stations

NGC3998: LOFAR Observations

- 10 sub-bands (2 MHz)
- no self-calibration
- uv-range: 0-4 km

- rms ≈ 15 mJy/beam
- F_{peak} ≈ 204 mJy/beam
- α ≈ -0.1

NGC3998: LOFAR Observations

- 10 sub-bands (2 MHz)
- no self-calibration
- uv-range: 0-4 km

- rms ≈ 15 mJy/beam
- P F_{peak} ≈ 204.0 mJy/beam
- α ≈ -0.1

Tier 1 Survey "Sneak Preview"

Image credit: Tim Shimwell

Tier 1 Survey "Sneak Preview"

- Distance from pointing center: 1°
- BW: 48 MHz
- Resolution: 20"
- Time: 8 hours
- RMS: 1 mJy/beam

Dir. dep. calibration needed for improved imaging

150 MHz: Tim Shimwell

1.4 GHz: Frank et al., in prep

Direction Dependent Calibration

http://www.astron.nl/citt/facet-doc/

Facet Calibration Pipeline 1.0 documentation »

Next topic

1. Acknowledgements

This Page

Show Source

Quick search

Go

Enter search terms or a module, class or function name.

Facet Calibration Software

This document describes the facet calibration software that im (in prep.) and Williams et al. (in prep.).

- 1. Acknowledgements
- 2. Introduction
 - 2.1. The Factor Parset
 - 2.2. Running Factor
- 3. Pre-facet Calibration Pipeline
 - 3.1. timmap
 - 3.2. dpppprepcal
 - 3.3. calibcal
 - · 3.4. ginst, gvdsfile, parmcoll and h5imp
 - 3.5. fitclock
 - 3.6. ampl
 - 3.7. plots
 - 3.8. concatmapcal and phase
 - 3.9. calib
 - 3.10. timtargetmap
 - 3.11. dppppreptar
 - 3.12. ateamtarget and ateamcliptar
 - 3.13. trans
 - 3.14. parmmap and calibtarget
 - 3.15. dpppaverage
 - 3.16. conatmaptar, createmap2 and dpppconcat
 - · 3.17. flagrfi
 - 3.18. gsmcalibtarget
 - 3.19. pre-facet calibration alterations
- 4. Initial Subtract Operation

van weren et al. 2015, submitted

Facet Calibration (FACTOR)

Tim Shimwell, David Raffertty, Stephan Frolich, **Reinout van Weeren,** Wendy Williams, Martin Hardcastle, Jose Sabater Montes, Francesco de Gasperin, and the Calibration and **Imaging Tiger Team**

Voronoi Tesselation to form Facets

Future Work

- Complete facet calibration of LOFAR 150 MHz NGC 3998 data
- Perform radio spectral analysis
- Obtain higher-frequency VLA data to constrain radio spectral ages

• Study additional systems!

Summary

- LOFAR science not limited to "monsters" – low-luminosity radio source science is possible!
- Framework for *user-friendly*, dir.dep. LOFAR calibration is publicly available (FACTOR)
- Dir.-dep. calibration of the NGC
 3998 LOFAR data will help
 provide constraints on the radio
 source age, evolutionary stage,
 and impact on the host galaxy

.... stay tuned for improved LOFAR 150 MHz imaging of NGC 3998!

Additional Slides

GMRT 150 MHz Observations

(Huib Intema)

Generic Pipeline Diagnostics

Generic Pipeline Diagnostics

Generic Pipeline Diagnostics

NGC3998 LOFAR Observations

Fringe Rate Spectra

L

L

How does AGN Feedback "Work"?

Radio Mode

- Mechanical energy from jets can drive gas out and carve "bubbles" in the ISM/IGM
- Duty cycle is much longer than for the quasar mode
- Generally more important at lower redshifts
- "Maintenance-mode" feedback

X-ray with radio contours

1 arcmin ≈ 21.4 kpc

Radio

X-ray

Perseus

Cattaneo et al. 2009

Optical

Radio Mode Feedback in Action

Background

AGNs at Low Radio Frequencies: Why?

- "Fossil" record of source evolution
- Information on the "life cycle" of a radio source
- Radio source age/duty cycle estimates
- Constraints on cosmic ray acceleration/loss mechanisms

Frequency / Hz

LOFAR Stations

LOFAR core station 2 × 24 antennas

LOFAR remote station 48 antennas

LOFAR international station 96 antennas (symmetric) plus 1 blank tile centre

LOFAR: Challenges

- Direction dependent effects:
 - Each antenna looks through a different patch of ionosphere
 - Need to calibrate each direction separately
 - Various techniques currently under development
 - Most methods are extremely computationally expensive

Need directiondependent calibration!

LOFAR: Challenges

- Ionosphere:
 - Partially ionized gas layer
 - Electron density variable in space/time
 - Units: Total Electron Content Unit (TECU)
 - 1 TECU = 10¹⁶ m⁻²

- Effect on images:
 - Phase errors
 - Positional shifts
 - Source distortions

LOFAR: Challenges

• The A-team: CygA, CasA, VirA, TauA, HerA, HydA

 Demixing: Subtraction of A-team signal from the raw visibilities required for all LBA and some HBA datasets

LOFAR: High Band Antenna (HBA)

• Frequency range: 110-250 MHz

• F.O.V. = 1-4° (FWHM)

LOFAR: Low Band Antenna (LBA)

• Frequency range: 10-90 MHz

• F.O.V. = 3-40° (FWHM)

Assumptions:

- Station beam varies slowly in time and frequency
- Phase α frequency⁻¹ (clock offsets corrected)
- No other frequency-dependent phase errors
- Ionosphere and beam errors vary slowly across FOV
- Differential Faraday Rotation can be neglected

The ATLAS^{3D} Survey

William Herschel Telescope

WSRT

IRAM 30m

Canada France Hawaii Telescope

*** 260 ETGs** ★ D < 42 Mpc **\star** M_{κ} < -21.5 mag

SDSS

Isaac Newton Telescope

CARMA

42

170

ATLAS^{3D} in the Tier 1 Survey

NGC 4111

NGC4111 0.200 5 GHz 58''0.175 0.150 J2000 Declination ⁶⁵ ⁶⁰, ⁶² ⁶² ⁶² 0.125 🕆 mJy beam 0.075 0.050 0.025 <u>θ</u> = 0.5" 0.000 $12^{
m h}\,07^{
m m}\,03.31^{
m s}$ $03.18^{\rm s}$ 03.04^{s} J2000 Right Ascension

NGC 4111 (*u*)

Other ATLAS^{3D} Galaxies . . .

NGC3998: Hα

A Gas-rich, Massive Lenticular Galaxy

Serra et al. 2013

Baldi et al. 2015

 $M_{HI} = 2.8 \times 10^8 M_{\odot}$

 $M_{H2} = 1.7 \times 10^7 M_{\odot}$

Superterp (320 m)

Low Band Antenna (LBA)

High Band Antenna (HBA)

æ