Comparison of F_{10.7} and Coronal EUV Emission using DEMs

Sam Schonfeld¹

Stephen White², Rachel Hock², Carl Henney², James McAteer¹, Nick Arge²

¹New Mexico State University ²Air Force Research Laboratory

AFOSR FA9550-15-1-0014, Career Award GR0004287, New Mexico Space Grant

6th November, 2015

F_{10.7} Index

- 10.7 cm (2.8 GHz) solar radio flux
 - 68 year observation history (Tapping 1987)
 - Used as a proxy for EUV in Ionospheric modeling

F_{10.7} Generation Mechanisms

- Bremsstrahlung
 - Active regions and plage
 - Free-free electron-ion interactions
 - Unpolarized
 - Traces density
- Gyroresonance
 - Active region cores
 - Electrons spiraling around magnetic fields
 - Circularly polarized
 - Traces magnetic field

The Mechanism Matters

- Bremsstrahlung is generated by collisions
 - Collisionally excited atomic emission lines emit EUV
- Gyroresonance results from magnetic fields
 No magnetically driven emission in EUV
- Gyroresonance is a contaminant when F_{10.7} is used as an EUV proxy
 - $F_{10.7}$ is a direct input to ionosphere models
 - Typical density errors of ≈10% (Bowman et al. 2008)
- Gyroresonance fraction unclear

Recent Studies

- Time series analysis -> gyroresonance dominated
- Imaging spectral index -> bremsstrahlung dominated

How We Separate Gyroresonance

Predicted Radio Bremsstrahlung

Schonfeld et al. 2015

- Bremsstrahlung prediction successful
 - Active region morphology matches observations
 - Identified discrepancy on the limb
 - Due to height of optically thick chromospheric layer
 - Causes ≈ 1 day delays in $F_{10.7}$ response to solar rotation
- Gyroresonance sources identified
 - 6.2 ± 0.3 sfu, 8.1% of F_{10.7}
 - Same order as ionospheric modelling errors

Preliminary Findings

- Successfully reproduced rotational modulation
- Quiet sun contribution to $F_{10.7}$, about 20 sfu
- Non-linear EUV and F_{10.7} relationship

- Future work:
 - Finalize time series analysis
 - Coordinated single region observation
 - Repeat full disk VLA observation

Thank You

10.7 cm (2.8 GHz)

193 Å

131 Å

171 Å

94 Å

Observations

- Radio data
 - Karl G. Jansky Very Large Array (VLA)
 - 17 of 27 antennas
 - Eight hour integration
 - Seven pointing mosaic
 - S-band 2—4 GHz coverage
 - 10.7 cm = 2.8 GHz
- EUV data
 - Atmospheric Imaging Assembly (AIA)
 - 60 second cadence
 - Six coronal EUV bands

Strongly Polarized Regions

Region 10

Left: Image = bremsstrahlung Contours = radio intensity

Right: Grayscale = photospheric magnetic field Contours = radio circular polarization

Region 15

Strong Polarization Examples

Region 3

NS from sun center [arcsec]

NS from sun center [arcsec]

Region 4

Weak Polarization Examples

NS from sun center [arcsec]

Region 9

Region 17

Differential Emission Measure

- Emission Measure (EM)
 - $\text{EM} \propto \int n_e^2 ds \ [cm^{-5}]$
 - Controls strength of collisional processes
 - Bremsstrahlung emission
 - Collisionally excited atomic emission
- Differential Emission Measure (DEM)
 - Emission measure as a function of temperature

1: Calculating the DEM

$$Flux_i = \sum Resp_i(T) \times DEM(T) \times \Delta T$$

- Observe optically thin medium at different temperatures
- Invert set of observations to determine necessary plasma structure
- No analytic solution
 - MCMC type forward model
 - Direct inversion

Limitations of Initial Analysis

- Only 17 of 27 antennae used
 - 37% decrease in collecting area
 - 61% reduction in u-v plane coverage
- Primary flux calibrator data unavailable
 - Assume solar attenuators were exactly 20dB
 - Estimate about 20% error in observed radio fluxes

2: Active Region Observation

- JVLA, C-configuration (7.5" resolution at $F_{10.7}$) - 2-12 GHz
- EUV Imaging Spectrometer (EIS)
 - R≈4000 in 170-210 Å and 250-290 Å with 2" spatial resolution
- Solar Optical Telescope (SOT)
 - Photospheric vector magnetograms with 0.2" resolution

2: EVLA observation of a small active region Merger of 5 frequency bands each 2 GHz wide

