The Magdalena Ridge Observatory Interferometer – New Path to First Light

> M. J. Creech-Eakman New Mexico Tech – MROI Proj. Scientist On behalf of the NMT and Cambridge Teams

Magdalena Ridge Observatory Interferometer

- Federally funded
 2000-2011, 2015-2020
- EIS completed in 2003
- Two facilities at MRO
 - NIR/Optical 10element interferometer:
 - 10 1.4m afocal telescopes in equilateral Y
 - Opt/NIR operation
 - Baselines: 7.8-343m
 - Design optimized for imaging faint/complex targets

MROI Key Science Mission

- AGN:
 - Verification of the unified model.
 - Determination of nature of nuclear/extra-nuclear starbursts.
 - H =14 gives >100 targets.
- Star and planet formation:
 - Protostellar accretion, imaging of dust disks, disk clearing as evidence for planet formation.
 - Emission line imaging of jets, outflows and magnetically channeled accretion.
 - Detection of sub-stellar companions.
- Stellar accretion and mass loss:
 - Convection, mass loss and mass transfer in single and multi-star systems.
 - Bipolarity and collimation of circumstellar material, wind and shock geometries.
 - Pulsations in Cepheids, Miras, RV Tauris, etc.

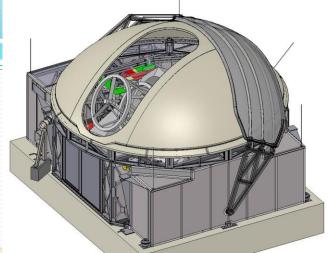
Technical Requirements Flowdown

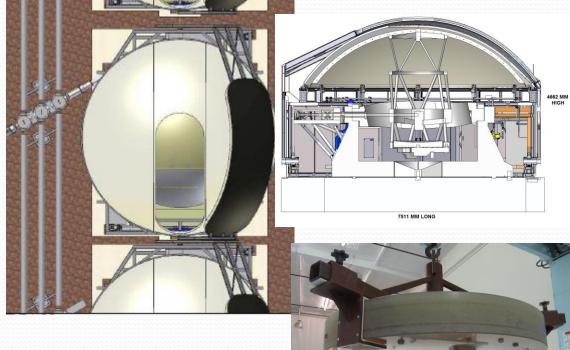
- Telescope diameter of 1.4 m
 - H magnitude = 14th for group delay tracking limit
- Spatial scales of 0.3 to 30 mas
 - Baselines from 7.8 to 343 m (for 0.6-2.4 microns)
- Moderate-to-high spectral resolutions
 - Separate fringe tracking and science cameras
- High throughput to achieve sensitivity limit
 - Fifteen reflections from primary to detectors
 - Optimized coatings for 0.6-2.4 microns
- Large number of telescopes rapidly combined
 - Optimized for model-independent imaging

Walk through the Optical Path

NM Symposium - Nov '15

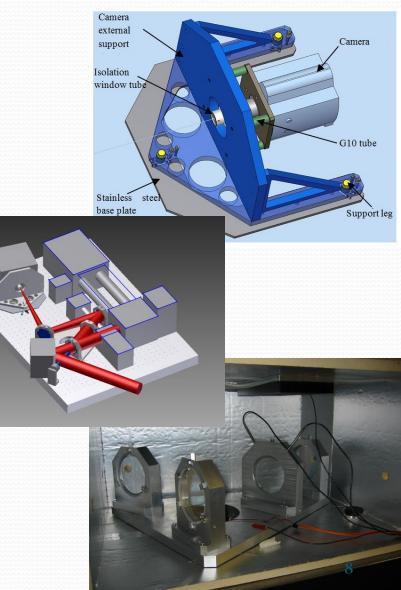
Unit Telescopes


- Designed/built by AMOS
 - 1.4m aperture
 - afocal alt-alt design
 - polarization preserving performance
 - 62 nm rms wavefront after three reflections
 - UT1 is on campus
 - UT2-3 long-lead items ordered and being assembled



Optics & UT Enclosures

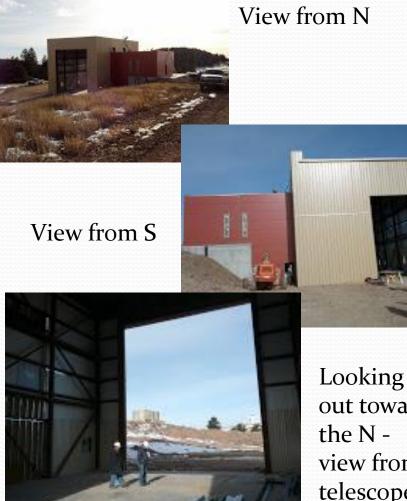
- Enclosures Designed and to be Built by EIE
- Houses and transports UTs
- Allows close-packed configuration to 30 deg elevation without vignetting for 6 hour tracks
- Expect UTM+E: 6/17
- 6 full sets of optics in warehouse
 - All M2's and M3's completed
 - First 3 M1's in various states of completion



NM Symposium - Nov '15

Fast Tip-tilt & Acquisition System

- Nearing completion at Cambridge:
 - Full-scale prototype under test
 - Majority of software complete
- Uses Andor EM CCD head
- Transmissive optics
 - High throughput and relaxed tolerances
- Fully passive opto-mechanical design:
 - No actuation to meet stability * requirements
- V-band sensitivity of 16 at MROI:
 - Good match to reddest targets



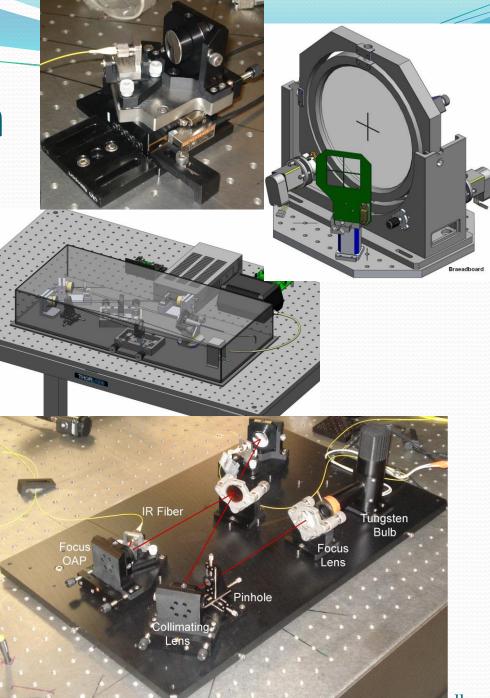
Foundations, Beam Relay & Inner Array

- Completely redesigned by M3 and built by MRO/NMT
- Meets stringent thermal, wind stability and subsidence requirements
- Supports 3 UTs per beamline with 0.5 mbarr vacuum from UT to BCA
- Install of 7 inner piers complete – utilities soon
- Houses all components of automated alignment system

Visitor's Center and Maintenance Facility

out toward the N view from telescope

- State DOT funded
- Visitor's Center (red): giftshop, displays, observing window
- Maintenance facility (beige): small machine shop, control room, overhead crane, telescope pad + all facility needs
- UTM1 SAT April-June 2016
- FOV to N: ~35° X 40°

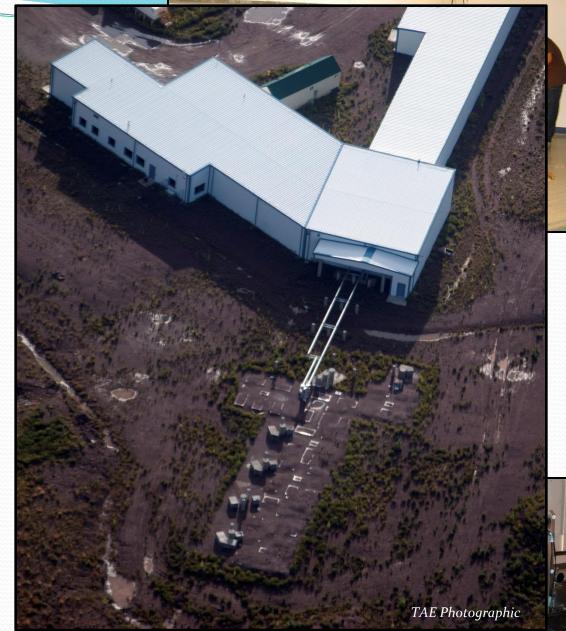


NM Symposium - Nov '15

Automated

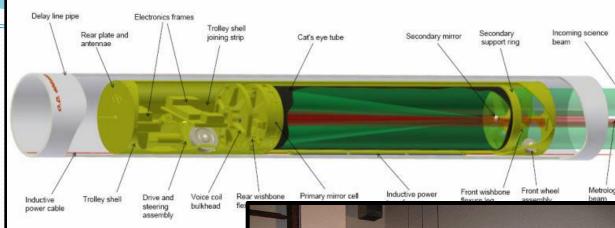
Alignment System

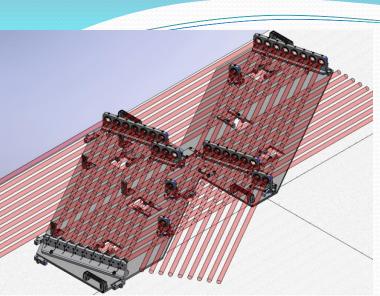
- Designed and built by MRO
- End-to-end alignment of tilt and shear
- Enclosed in a "Magical Optical Box"
- Custom quad cell and beam injection via fibers
- Undergoing redesign to optimize for Ridge



Metrology Table

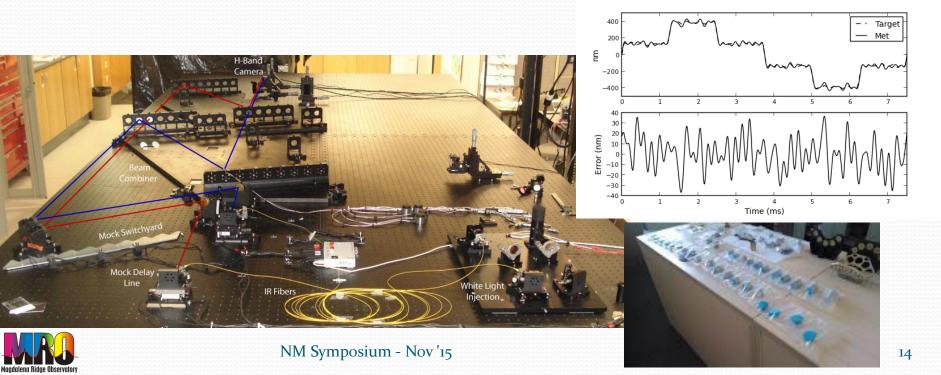
Beam Combining Facilities


- Design by M3/built KL House – delivered in 2008
- Thermal & vibrational stability
- Supports full 10telescope array
- Single-pass DL section 190 m long

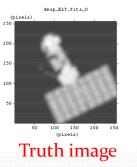

Delay Lines

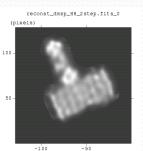
- Designed/built Cambridge
- Inductive power pick-up & wireless communications
- DL1 pipe install to about 100m length
- DL1 Site Acceptance Testing to be finished 3/16

MROI Delay Line Trolley



Fringe Tracker - ICONN


Designed/built by MROOperates H or Ks


•Uses nearest-neighbors combination
•Closed loop FT in the lab using step modulation and "fake atmosphere"
•Adding all dewar internal optics for first 6 telescopes

Preliminary Plans forward:

- AFRL Cooperative Agreement (FA 9453-15-2-0086): Sept 30, 2015 – Sept 29, 2020 for *Imaging Geosynchronous Satellites*
 - Kick-off Meeting Nov 24, 2015
 - Partners: Univ. of Cambridge, NRAO, Lockheed Martin and several subcontractors
- Current Milestones:
 - UTM1 first light (VCMF) 5/16
 - UTM1+E first light on Array 6/17
 - First fringes 3/19

10 element MROI + smaller telescope

• Closure phase (3 UTs) with Science Combiner – 6/20

Young, Haniff & Buscher (2013)

Thank you for your attention!

- <u>PI</u>: Van Romero
- <u>Deputy PI</u>: R. Cervantes
- Prog. Director: I. Payne
- <u>System Architects</u>: C. Haniff, D. Buscher
- <u>Proj. Scientist</u>: M. Creech-Eakman
- <u>Visitor's Center</u>: M. Stanley

- <u>NMT Team</u>: M. Edwards, A. Farris, D. Klinglesmith, A. Olivares, J. Pino, C. Salcido, L. Schmidt, J. Trueblood
- <u>Students:</u> R. Kelly, M.
 Napolitano, J. Riker, S.
 Rochelle, B. Vestergren
- <u>Cam. Team</u>: R. Boysen, M. Fisher, B. Seneta, D. Sun, D. Wilson, J. Young

