Exploring dwarf galaxy evolution around Milky Way mass galaxies

Kenza Arraki

New Mexico State University

Anatoly Klypin
Daniel Ceverino
Sebastian Trujillo-Gomez
Joel Primack
Understanding galaxy evolution
Key Challenges

• Understanding galaxy evolution requires:
 – large volume
 – high spatial resolution
 – long time span
 – good time resolution
 – following of dark matter particles
 – creation of stars and treatment of feedback
 – following gas flows
• Understanding dwarf galaxy evolution requires:
 – even higher spatial resolution
 – large, well resolved volumes
Why it Matters

• Still are discrepancies between theory predictions and observations on small (galaxy) scales
• Gain a better understanding of:
 – how dwarf galaxies build up their mass
 – how many satellite dwarf galaxies there are
 – morphological types of dwarf galaxies as evolution
 – how satellite and isolated dwarf galaxies differ
 – what dwarf galaxies central densities depend on
 – how dwarf galaxies impact their host galaxy
 – where the other 50% of gas mass is around our galaxy
 – what observations are required to find this gas
Project Goals

• Create galaxies that are:
 – realistic - match observations on a variety of tests
 – high resolution - able to examine these small scales

• Use them to learn about dwarf galaxies
 – isolated and satellite galaxies
 – abundances
 – star formation rates
 – central densities
 – morphological changes
 – tidal disruption and mass loss
 – influence on gas around galaxies
Simulations

Run by Daniel Ceverino
hydrodynamical ART code

Box length = 20 /h Mpc
DM mass = 8x10^4 M_{sun}
Resolution = 17 pc

N cells = 67 million
N particles = 30 million

Stellar winds
Supernovae feedback
Radiation pressure (τ_{IR}=0)
Simulations

10 VELA host galaxies
Possible MW progenitors
No specific environmental selection
Range of merger histories and M_{vir}

Results from redshift one

$M_{\text{vir}} = 2 \times 10^{11} - 1.2 \times 10^{12} \ M_{\text{sun}}$

$M_{\text{star}} = 6 \times 10^{9} - 8 \times 10^{10} \ M_{\text{sun}}$

$R_{\text{vir}} = 92 - 147 \ \text{kpc}$
Distribution of galaxies around main halo

• **Red “x”** marks the center of main halo

• **Red circle** marks the ‘edge’ of the main galaxy

• **Blue dots** are luminous dwarf galaxies

• **Black dots** are dwarf galaxies without any stars (dark galaxies)
Stellar Mass Functions

• All normalized to a halo mass of $10^{12} \, M_{\odot}$

• Half of the halos are similar to observations
• There is lots of scatter in M_* and M_{vir}
• In agreement with other simulations, observations, and expected low-mass abundance matching relations
Star Formation Histories (SFH)

Cumulative SFH of dwarf galaxies
- Gray area is range of SFHs
- Black line is the average SFH

Weisz 2014 observations of Local Group dwarfs in the same mass range

$10^5 \, M_{\text{sun}} < M_* < 10^6 \, M_{\text{sun}}$

$10^6 \, M_{\text{sun}} < M_* < 10^7 \, M_{\text{sun}}$
New initial conditions run with ART by Anatoly Klypin and Kenza Arraki

All implemented physics is included: Supernovae Radiation Pressure Photoionization

Box = 100 /h Mpc
DM mass = 2x10^5 M_{sun}
Resolution = 60 pc

No specific environmental selection

Run down to z=0
Conclusions

• Vela simulations are high-resolution hydro runs of MW-mass galaxies and their satellites down to redshift one

• Including Radiation Pressure (RP) and Photoionization (PH) physics produces a realistic dwarf galaxy population

• Slightly over produces luminous satellites

• Stellar-Mass Halo-Mass function has a large spread in M_*

Upcoming:
 Vela4 simulations including SNe, RP, & PH
 New ICs, larger box, run down to $z=0$

Thanks to the Blue Waters Graduate Fellowship and the yt project