Molecular Gas & the Nuclear Starburst in NGC 253

Mark Gorski, Jürgen Ott, David Meier, Fabian Walter, Emmanuel Momjian, Richard Rand
Contents

1. Overview of Molecular Gas and Star Formation
2. The Galaxy Sample and NGC 253
3. The galactic ecosystem in NGC 253
Contents

1. Overview of Molecular Gas and Star Formation

2. The Galaxy Sample and NGC 253

3. The galactic ecosystem in NGC 253
From Gas to Stars

1. Gas exists in a diffuse atomic phase within a galaxy (Kpc)

2. Formation of molecular clouds (10-100 pc)

3. Fragmentation into clumps and cores (0.1-1pc)

4. Core contraction to form stars (AU)

5. Stars feed energy, metals, and momentum back into the cloud
Various Starburst Definitions

- The SFR cannot be sustained over some fraction of the Hubble time
- Current SFR exceeds past SFR by order much greater than one
- SFR efficiency is much higher than “normal” star forming galaxies

Project Overview

- The WIDAR Correlator is capable of providing 8 GHz of bandwidth.
- We can observe multiple spectral lines at once with the same conditions. (atmosphere, UV coverage, sensitivity,)
- How does the galactic ecosystem change with SFR?
- How does SF influence the galactic environment?
- What properties of the ISM are important for understanding Star Formation?
- What is the anatomy of a galaxy?

Meier and Turner 2005
Molecular Tracers

- **CO (Carbon Monoxide):** 115.271 GHz
 - Molecular Gas Tracer

- **NH$_3$ (Ammonia):** 23.6945 – 27.4779 GHz
 - Temperature and Dense Gas tracer.

- **H$_2$O (Water):** 22.2351 GHz,
 - Traces Shocks, collisionally excited maser. YSO, AGB stars, and AGN tori.

- **CH$_3$OH (Methanol):** 36.1639 GHz,
 - Class I maser, collisionally excited, shock tracer.
Contents

1. Overview of Molecular Gas and Star Formation
2. The Galaxy Sample and NGC 253
3. The galactic ecosystem in NGC 253
<table>
<thead>
<tr>
<th>Galaxy</th>
<th>D[MPc]</th>
<th>SFR [M_\odot yr$^{-1}$]</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC 342</td>
<td>3.0</td>
<td>1.5</td>
<td>Face on spiral</td>
</tr>
<tr>
<td>NGC 6946</td>
<td>5.2</td>
<td>1.4</td>
<td>Face on spiral, buried nuclear SF</td>
</tr>
<tr>
<td>NGC 253</td>
<td>3.5</td>
<td>5</td>
<td>Barred spiral, nucleated starburst</td>
</tr>
<tr>
<td>NGC 2146</td>
<td>3.9</td>
<td>11</td>
<td>Peculiar barred spiral, LIRG(almost)</td>
</tr>
</tbody>
</table>

T.A. Rector/University of Alaska Anchorage, H. Schweiker/WIYN and NOAO/AURA/NSF; Gemini Observatory/Travis Rector, University of Alaska Anchorage; SSRO/PROMPT/CTIO; T.A. Rector (University of Alaska Anchorage) and H. Schweiker (WIYN and NOAO/AURA/NSF)
NGC 253 in detail

- Distance: 3.5 Mpc
- $V_{sys} = 235 \text{ km s}^{-1}$
- Barred spiral galaxy
 - Class: SABc
- Nucleated star burst $\sim 3M_\odot \text{ yr}^{-1}$
- Total SFR $\sim 5M_\odot \text{ yr}^{-1}$
- Molecular outflow rate $\sim 9M_\odot \text{ yr}^{-1}$ (Bolatto et al 2013)
Observations

- K and Ka band, D configuration
 - Ammonia (1,1) to (5,5) transitions 23-25GHz
 - Water(6-5) 22.3GHz
 - Methanol(4-3) 36.2GHz
- Primary beam: ≈2 arcmin
- Resolution: ≈6x4 arcsec
- RMS: ≈ 0.6 mJy/chan
- 3.5 km/s /channel
Ammonia\(\text{NH}_3(1,1)\)
Ammonia(1,1) & (3,3)
Ammonia Spectra
Ammonia Masers
Temperatures
Temperatures
Water Masers

Integrated Flux

Peak Flux
Water Spectra

![Graphs showing water spectra with velocity in GHz on the x-axis and flux density (Jν) on the y-axis.](image)
Water Masers

- Super resolved cube 2”x1”
- Extension perpendicular to the bar.
- Dominated by W1
- No resolved velocity Structure
- Likely not an AGN
Methanol
Super Bubbles

- $V_{\text{exp}} = 50 \text{ km/s}$
- $\sim 100\text{pc} \text{ diameters}$
- Super Star Cluster or Hypernovae needed for formation
- See Sakamoto et al. 2006
Methanol Masers

- M1 and M2 are seen at the edge of west super bubble
- M4 and M5 are associated with the east Super bubble
- M3 is displaced from the super west super bubble.
- Methanol Mega masers $\sim 1-2M_\odot$
Contents

1. Overview of Molecular Gas and Star Formation

2. The Galaxy Sample and NGC 253

3. The galactic ecosystem in NGC 253
Conclusions

- Dense molecular gas can be described with a single ~130K temperature component.
- Masers and high temperature gas associated with most recent star formation.
- 5 new water masers candidates.
- Water maser extension seemingly along the outflow. No AGN torus-like velocity components.
- 5 new methanol masers likely associated with shocks in super bubbles.
- No Temperature enhancement associated with super bubble shocks.
Future Projects

- Apply the same analysis to the other three galaxies in the sample
- Look for relationships with star formation rates
- Relationships with other structures in galaxies
- Resolved studies of Ammonia, Methanol, and Water Masers
Questions