Determining Ages of APOGEE Giants with Known Distances

Diane Feuillet (NMSU)
Jon Holtzman, Jo Bovy, Leo Girardi,
The APOGEE Team
New Mexico Symposium
Socorro, NM
November 6, 2015
Apache Point Observatory Galactic Evolution Experiment

- Explore Galactic evolution through detailed chemical abundances
- High resolution near-IR spectrograph
- 130,000 red giants, ~400,000 in APOGEE-2

Nidever+ 2014
Abundances Across the Disk

Hayden+ 2015
Abundances Across the Disk

- Direct comparisons of different radial bins is difficult
- SFR, inflow, mixing, etc

Hayden+ 2015
Ages and Abundances

Age adds crucial evolutionary information and population identification

Haywood+ 2013
Ages and Abundances

Haywood+ 2013
Ages of Red Giants

- Need distance
- Bayesian isochrone matching
- Assume flat SFH

\[\sigma = 0.1807 \]
Local Sample

- 700 local giants within 400 pc
- Use Bayesian analysis to find ages
Hierarchical Modeling

- Better prior on the SFH
- Use the full age PDF to constrain a model SFH
- α-dependent Gaussian SFH
Age Trends

- Strong relation between α abundance and mean age of Gaussian model
- Age-metallicity relation consistent with other work
- Velocity dispersion consistent with GCS
Age Trends

- Strong relation between α abundance and mean age of Gaussian model
- Age-metallicity relation consistent with other work
- Velocity dispersion consistent with GCS
Age Trends

- Strong relation between α abundance and mean age of Gaussian model
- Age-metallicity relation consistent with other work
- Velocity dispersion consistent with GCS
Age Trends

- Strong relation between α abundance and mean age of Gaussian model
- Age-metallicity relation consistent with other work
- Velocity dispersion consistent with GCS
Age Trends

- Strong relation between α abundance and mean age of Gaussian model
- Age-metallicity relation consistent with other work
- Velocity dispersion consistent with GCS
Age Trends

- Strong relation between α abundance and mean age of Gaussian model
- Age-metallicity relation consistent with other work
- Velocity dispersion consistent with GCS
Future Work

- Use monoabundance subsamples
- Apply to RC sample
- Apply to full APOGEE sample with Gaia distances
Future Work

- Use monoabundance subsamples
- Apply to RC sample
- Apply to full APOGEE sample with Gaia distances

QUESTIONS?