New Insights on a Nearby AGN-Driven Molecular Outflow from Recent VLA and VLBA Observations

Kristina Nyland

Ph.D. Candidate at New Mexico Tech

Co-Authors: K. Alatalo, L. M. Young, J. M. Wrobel, R. Morganti, T. A. Davis, P. T. de Zeeuw, S. Deustua, & M. Bureau

New Mexico Symposium; January 17, 2014

Background

CO observations with IRAM, CARMA, and the SMA suggest NGC 1266 hosts a molecular outflow

Alatalo et al. 2011

Star formation is insufficient to drive the outflow

NGC 1266 is a rare, local candidate for an AGN-driven molecular outflow

New Radio Interferometric Data

What are the conditions at the *launch-point* of the outflow?

How does the kpc-scale radio jet *interact* with the ISM?

VLA HI & Continuum

VLBA Continuum Source

The compact VLBA emission is detected within the densest portion of the molecular gas

VLBA Continuum Source

Source Extent:d < 8 mas (1.2 pc)

Radio Power:

$$P_{\rm radio} = 1.48 \times 10^{20} \, \rm W \, Hz^{-1}$$

Brightness Temperature:

$$T_{\rm b} > 1.5 \times 10^7 \, \rm K$$

VLBA emission is most consistent with a low-level AGN origin

Missing VLA Flux Density?

 $S_{\text{core}} \approx 70.53 \text{ mJy}$

 $S_{\text{total}} \approx 1.38 \text{ mJy}$

The VLBA recovered only ≈2% of the core VLA emission

New VLA HI Observations

New HI Observations

Radio Jet-ISM Interaction?

Nyland et al. 2013

For gas entrainment by a radio jet:

The energy and geometry of the jet and gas should be similar

Radio Jet Entrained Gas - Energetics

$$U_{\min} = 0.5(aAL)^{4/7}V^{3/7}$$

Minimum Jet Energy:

$$U_{\rm min} = 1.7 \times 10^{54} \, \rm erg$$

VS.

Molecular Outflow Kinetic Energy:

$$K_{\text{outflow}} = 1.0 \times 10^{55} \text{ erg}$$

The radio jets *may* be able to entrain molecular gas in NGC 1266

Jet Mechanical Power (P_{jet})

Does the radio jet in NGC 1266 have enough mechanical power to drive the outflow?

- Outflow mechanical luminosity
 - $-L_{\rm mech} \approx 1.3 \times 10^{41} \, \rm erg \, s^{-1}$
 - Jet power estimates
 - empirical relations from studies of radio jetinflated X-ray cavities
 - $-P_{\rm jet} \approx 0.2-3.3 \times 10^{42} \text{ erg s}^{-1}$

The radio jets *may* have enough mechanical power to drive the outflow

Future Work

 High Sensitivity Array imaging

 Deep VLA imaging + polarization and radio spectral analyses

 Low frequency radio imaging

Summary

Nyland et al. 2013, ApJ, 779, 173

- The VLBA detection of compact, central, high $T_{\rm b}$ emission strongly supports the presence of an AGN
- The origin of the remaining 98% of the kpc-scale VLA emission not detected by the VLBA remains unclear
- Jet-mechanical feedback may be powerful enough to drive the outflow

These findings suggest that even low-level AGNs may be able to launch massive outflows that can impact their host galaxies