The formation of planetesimals in proto-planetary disks, observed with the Jansky VLA

Claire Chandler, NRAO

Laura Pérez*, Stuartt Corder (NRAO) Andrea Isella, John Carpenter, Luca Ricci, Anneila Sargent (Caltech) Adam Deller (ASTRON), Woojin Kwon (SRON) Sean Andrews, David Wilner, Robert Harris* (CfA) Lee Mundy, Shaye Storm* (U. Maryland) Kees Dullemond, Thomas Henning, Hendrik Linz (MPIA) Jane Greaves (St. Andrews), Joe Lazio (JPL), Nuria Calvet (U. Michigan) Leonardo Testi, Marco Tazzari* (ESO), Jonathan Menu* (Leuven)

Disks: natural by-product of star formation

From ISM Dust to Planetary Systems

Adapted from Chiang & Youdin (2009)

Long- λ dust emission

Optically-thin \Rightarrow traces mass $F_{\nu} \approx \kappa(\nu) M_d B_{\nu}(T_d) d^{-2}$

 $\kappa(\nu) \propto \nu^{\beta}$ $F_{\nu} \propto \nu^{\alpha}$, with $\alpha = 2 + \beta$

Long- $\lambda \Rightarrow$ in Rayleigh-Jeans for typical disk temperatures

$$F_{\nu} \approx \frac{2k}{c^2} \nu^2 \kappa(\nu) \frac{M_d T_d}{d^2}$$

Spectral index, β , is a measure of the size of the dust grains in a disk!

Can be derived directly from α

Need long- λ to measure big grains

Multi- λ observations constrain β_{disks} < 1

 $\beta_{\rm ISM} \approx 1.8 \pm 0.2$

k Dust in the ISM

* (diffuse and dark clouds)

Integrated disk spectra show flatter spectral index:

$$2 < \alpha_{disks} < 3 \Rightarrow \beta_{disks} < 1$$

E.g., Li & Draine (2001)

E.g., Beckwith & Sargent (1991)

Expect spatial variations: observational constraints on radial variations of β

CARMA observations of RYTau

 ΔS_{v2}

Isella et al. (2010) See also: Guilloteau et al. (2011) Banzatti et al. (2011)

2.7mm

1.3mm

The Disks@EVLA project

- Survey statistically significant sample of protoplanetary disks (65 sources) at cm wavelengths with the VLA; goals:
 - * Determine prevalence of grain growth to cm-sized particles in disks with ages 1-10 Myr from spectral indices
 - * Use high resolution to image location of large dust grains in disks
 - * Investigate dependence of particle populations on properties of the central stars, disk structure, and star forming environment

* See https://safe.nrao.edu/evla/disks/ for project information

Sample

Breakdown by type:

* Taurus-Auriga	34
-----------------	----

- * Ophiuchus 25
- * Isolated

* Single 49

* Multiple 16

* "Classical" 50* "Transition" 15

49 sources imaged, 40 resolved

6

TWHya: Menu et al. (2013)

wavelength (µm)

Observations

- Observations from July 2010 through December 2012
 - * 376.5 hrs observed in 138 scheduling blocks, 10.5 TB raw data
 - * First wide bandwidth data tak
- New wide bandwidth capab
 - * 1 GHz BW per IF, two IFs
 - * Photometry at C/K/Ka/Q ban
 - * Imaging at Ka/Q (+C) bands:

Complications

- * First wide bandwidth data taken with the new EVLA hardware!
- Early datasets are challenging
- Most of the photometry data were taken first: focus on imaging results today
- * Some SBs observed with resolved calibrators \rightarrow need to model

Observation/reduction summary

* 49 sources imaged, 27 at the highest resolution in A-config:

SFR	C/CnB	B/BnA	Α
Taurus-Auriga	GGTau, Haro6-37, GMAur, ABAur, HD35187	FTTau, UXTau, DMTau, DNTau, HPTau, DRTau, UYAur, CQTau, DLTau	MHO1/2, CYTau, V892Tau, RYTau, UZTau*, MWC480, TTau, DGTau, DGTauB, GVTau, HLTau, XZTau, Haro6-13, DOTau, DQTau
TW Hydra Association			TWHya*, HD98800
ρ Ophiuchus	DoAr24, IRS41, WSB52, RNO90, RNO91, Elias49	WSB60, AS209*	AS205, GSS26, DoAr25, Elias24, Elias27, SR24, IRS51, WaOph6
Other isolated			HD142666, MWC275

Imaging: sensitivity

Typical resolution of targets observed in A+B+C configs is
0.1 arcsec ~ 14 AU

- * Typical rms noise is 10µJy/beam
- Brightness temperature:
 - * In Rayleigh-Jeans, S = 2 k T_B Ω / λ^2 , so if emission is resolved (no beam dilution) and detected at the 10- σ level (0.1 mJy/beam) the source brightness temperature is ~ 11 K
 - * For source radiation temperature T_R the optical depth is then just $\tau = T_B/T_R$
 - To be detected at 10- σ dust emission from a disk must have optical depth ~0.1 to 1
 - Potential contamination from optically thin (and beam-diluted) freefree emission from ionized wind or jet close to star

A protoplanetary disk picture gallery

"Low" resolution images ($\theta_{\rm B} \sim 0.7$ ")

Ka-band imaging provides spectral index information, even for unresolved sources: many consistent with contributions from dust; S $\propto v^{\alpha}$

Marginally resolved emission; transition disks denoted in GOLD

Resolved sources: no spectral index info for those observed at Q-band

"Medium" resolution images ($\theta_{B} \sim 0.25$ ")

* Resolved sources: "classical" disks

Resolved sources: "transition" disks

inner holes, spectral index consistent with dust emission

"High" resolution images ($\theta_{\rm B} \sim 0.1$ ")

All sources resolved on these size scales; classical disks:

"High" resolution images ($\theta_{B} \sim 0.1$ ")

Transition disks: free-free component coincident with star (all spectral types ______

Constraints on grain growth

* AS209: Pérez et al. (2012): combine SMA+CARMA+VLA

- * Increase lever arm for measuring slope of dust opacity
- * Extends sensitivity to large dust grains

Dust emissivity index, β

* $\tau_{\lambda}(R) = \kappa_{\lambda}(R) \Sigma(R)$, dust emissivity usually modeled as $\kappa_{\lambda} \propto \lambda^{-\beta}$

- * Turn measurement of $\tau_{\lambda}(R)$ into constraint on $\beta(R)$
 - * Inconsistent with a constant value of β as a function of radius!

Results for other sources

* Pérez (2012, PhD Thesis)

Multiple systems: UZTau, UXTau, AS205

Harris (2013, PhD Thesis): dust properties similar to single systems

What does κ tell us about the grain size?

Assume grain size distribution $n(a) \propto a^{-q}$ up to max grain size a_{max} ; use models of κ_{λ} to constrain a_{max}

Miyake & Nakagawa (1993)

a_{max} vs. radius for AS209

* Find a_{max} that reproduces multi-wavelength emission, $F_v \sim \kappa(v) M_d B_v(T_d) d^{-2}$

Pérez et al. (2012)

What about the barriers to grain growth?

Physical barriers to grain growth: fragmentation and radial drift (Birnstiel et al. 2012)

Results for other sources

All have a_{max} larger than can be explained by fragmentationdominated particle sizes for "standard" viscosity parameter α =0.01, but instead are consistent with a_{max} limited by drift \Rightarrow disks are not very turbulent (tentative conclusion!)

TWHydra

* Similar conclusion for the transition disk around TW Hya (Menu et al. 2013, submitted): a concentration of large grains in the center of the disk is needed to explain the submm/mm/cm data

Conclusions

- Evidence for growth to cm-sized particles in inner regions of protoplanetary disks from detailed modeling of 6 sources
- Max. particle size consistent with drift-dominated size distribution, suggests low turbulence (otherwise a_{max} would be lower due to collisional fragmentation)
- Full sample comprises 40 sources with resolved cm emission that will be used to study dust properties vs. stellar properties (multiplicity, spectral type, SF environment, ...)
 - * So far, dust properties of disks in multiple systems same as single systems
 - The VLA is a powerful tool for studying grain growth and the formation of planetesimals; highly complementary to ALMA