F00183-7111: Are AGNs turned on by mergers?

Minnie Y. Mao (NRAO) Ray Norris (ATNF) Bjorn Emonts (INTA-CSIC) Rob Sharp (AAO) Illana Feain (USyd) Kate Chow (ATNF) Emil Lenc (CAASTRO) Jamie Stevens (ATNF)

F00183-7111: An AGN Dominated ULIRG

Minnie Y. Mao (NRAO) Ray Norris (ATNF) Bjorn Emonts (INTA-CSIC) Rob Sharp (AAO) Illana Feain (USyd) Kate Chow (ATNF) Emil Lenc (CAASTRO) Jamie Stevens (ATNF)

Why this is interesting

- IRAS F00183-7111 is one of the most extreme Ultra Luminous Infrared Galaxies (ULIRGs) known
- ULIRGs are believed to represent a transitional stage towards the formation of dusty quasars (e.g. Armus, Heckman & Miley 1987)
- Understanding the nature of ULIRGs is thus critical to understanding the evolution of galaxies
- Especially when they're relatively close like F00183... (z = 0.3276)
- F00183 appears to have been caught just as it's transitioning to quasarmode (Norris et al. 2012)
- Debates have raged over whether ULIRGs are predominately powered by star-formation (e.g. Genzel et al. 1998) or AGN (e.g. Sanders 1999)
- Let's find out...

ULIRG: What's in a name?

A nose by any other name would still smell... - Reduced Shakespeare Compan

- **Ultra** \rightarrow Very; extremely
- Luminous → Full of or shedding light; bright or shining, esp. in the dark
- Infrared → Having a wavelength just greater than that of the red end of the visible light spectrum but less than that of microwaves. Infrared radiation has a wavelength from about 800 nm to 1 mm, and is emitted particularly by heated objects
- Galaxy → A system of millions or billions of stars, together with gas and dust, held together by gravitational attraction

ULIRG: What's in a name?

A nose by any other name would still smell... - Reduced Shakespeare Company

- **Ultra** \rightarrow Very; extremely
- Luminous \rightarrow Full of or shedding light; bright or shining, esp. in the dark
- Infrared → Having a wavelength just greater than that of the red end of the visible light spectrum but less than that of microwaves. Infrared radiation has a wavelength from about 800 nm to 1 mm, and is emitted particularly by heated objects
- Galaxy → A system of millions or billions of stars, together with gas and dust, held together by gravitational attraction

A system of millions or billions of stars, together with gas and dust, held together by gravitational attraction that is extremely full of or shedding light that has a wavelength just greater than that of the red end of the visible light spectrum but less than that of microwaves...

ULIRG: What's in a name?

A nose by any other name would still smell ... - Reduced Shakespeare Company

- A system of millions or billions of stars, together with gas and dust, held together by gravitational attraction that is extremely full of or shedding light that has a wavelength just greater than that of the red end of the visible light spectrum but less than that of microwaves...
- IR emission → dusty! hot dust may be attributed to the UV emission from young hot OB stars, which is being absorbed by the dust and reradiated...
- ULIRGs are galaxies that are extremely star-bursty?

ULIRGs

- Ultra Luminous InfraRed Galaxies
- Extremely Luminous FIR sources (ELFs)
- Classically defined as $L_{IR} > 10^{12}L_{\odot}$
- ULIRGs were first discovered by IRAS almost 30 years ago (Aaronson & Olszewski 1984)
- ULIRGs are believed to be predominately powered by star-formation, but may have a significant contribution by AGN (e.g. Lonsdale 2006)
- Veilleux et al (2009) find that the average AGN contribution to the bolometric luminosity is ~35 40%
- The closest ULIRG to us is Arp 220 (z = 0.018)

ULIRGs

- Current observations suggest that ULIRGs are formed as a result of the merger of two gas-rich spirals (Sanders et al. 1988)
- The merger scenario for ULIRGs triggers "cold-mode" accretion onto the central black hole
- The dusty, gas-rich spiral galaxies feed the black hole resulting in its rapid growth
- This leads to powerful quasar winds that quench star-formation (e.g. Hopkins et al. 2008), which drives the black hole's fuel away thus starving both the AGN and the star-formation
- The AGN now accretes hot gas inefficiently resulting in "hot-mode" accretion

ULIRGs

ULIRGs are believed to be an evolutionary stage of the classic double-lobed radio galaxies we see in the local Universe

IRAS F00183-7111

- F00183 is one of the most luminous sources discovered by IRAS!
- z = 0.3276 (Roy & Norris 1997)
- S_{70µm} = 1.5 Jy
- $L_{8-1000\mu m} = 9 \times 10^{12} L_{\odot}$ (Spoon et al. 2009)
- L_{4.8GHz} = 3 x 10²⁵ W/Hz (Roy & Norris 1997)

IRAS F00183-7111

Declination (J2000)

- One of the best ways of distinguishing between star-formation and AGN is the use of VLBI.
- Recently, Norris et al (2012) detected F00183 at 2.3 GHz using the LBA
- The LBA image displays a classical core-jet morphology
- The morphology and spectral index are both consistent with Compact Steep Spectrum (CSS) sources (O'Dea 1998)
- CSS sources are widely thought to represent an early stage of evolution of radio galaxies (e.g. Randall et al. 2011)

Image: Figure 1 from Norris et al. 2012. Naturally weighted 2.3 GHz LBA image of F00183. The peak flux is 45 mJy/beam and the source has a total integrated flux of 178 mJy.

IRAS F00183-7111

 F00183 is believed to have been caught in the brief transition period between merging starburst and radio-loud "quasar-mode" accretion (Norris et al. 2012)

Image: Figure 3 from Norris et al. 2012. UKST R-band image of F00183. The green contours show the location of the LBA detection

CO(1-0)

- Molecular hydrogen (H2) is a key ingredient to forming stars
- However, unless shocked or heated to very high temperatures, H₂ is very difficult to see due to its strongly forbidden rotational transitions
- H₂ may be traced by carbon monoxide (CO), which emits strong rotational transition lines that occur primarily through collisions with H₂.
- CO traces the star-formation and is NOT contaminated by the presence of AGN
- At z = 0.3276, CO(1-0) is redshifted into the 3mm observing band on the Australia Telescope Compact Array.

ATCA

- Australia Telescope Compact Array
- Located in Narrabri, NSW (~6h drive from Sydney)
- 6 x 22m antennas
- 6km maximum baseline
- Operates from 1GHz to 106GHz in 5 discrete bands (~3mm – 30cm)
- In 2009, ATCA was upgraded with the Compact Array Broadband Backend (CABB)

 Operated by the CSIRO Astronomy and Space Science (CASS) division and is part of the Australia Telescope National Facility (ATNF)

CABB

- Compact Array Broadband Backend
- Wilson et al. (2011)
- Pre-CABB instantaneous bandwidth: 2 x 128MHz
- CABB instantaneous bandwidth: 2 x 2GHz (full Stokes)
- 16-fold increased in bandwidth! → 4-fold increase in continuum sensitivity

 CABB's increased sensitivity has substantially advanced the science capabilities of the ATCA!

- Measuring the reservoir of molecular gas in F00183 will enable us to estimate the contribution by star-formation of the overall energy budget *without* contamination of AGN
- If all the IR luminosity were due to starformation we would expect an extremely strong CO(1-0) detection...

Huge-normous star-formation?

- $L_{8-1000\mu m} = 9 \times 10^{12} L_{\odot}$ (Spoon et al. 2009)
- If powered solely by star-formation this would imply a SFR of ~1600 $M_{\odot}/year!$
- L_{2-10keV} ~ 2 x 10⁴⁴ erg/s (Nandra & Iwasawa 2007)
- If powered solely by star-formation this would imply a SFR of >12000 $M_{\odot}/year!$

- 4 x 12h in H75 (PI: Norris)
- October 2011
- 7.4 arcsec spatial res

- 2 x 2 GHz, 1 MHz resolution → ~3.5km/s
- Observing frequency: 115.271/ (1+z) = 86.8 GHz
- Effective on source time ~25h

- Spatially unresolved
- $L'_{CO} = 1.25 \times 10^{10} \text{ K km/s pc}^2$
- $M_{H2} = 1 \times 10^{10} M_{\odot} (\alpha_X = 0.8 M_{\odot}, Downes & Solomon 1998)$
- Implies SFR ~220 M_☉/year (e.g. Carilli & Walter 2013)
- Only 14% of the total power is contributed by star-formation

But there's a whopping great AGN...

- Norris et al. (2012) find a 10²⁵ W/Hz AGN core
- Nandra & Iwasawa (2007) calculate that the AGN contributes >80% of the total IR luminosity
- Ranalli et al. (2003) infer the SFR from the soft X-ray luminosity to be 310 $M_{\odot}/year$
- Spoon et al. (2004) find that star-formation contributes only up to 30% of the total IR luminosity...

Huge-normous star-formation?

- $L_{8-1000\mu m} = 9 \times 10^{12} L_{\odot}$ (Spoon et al. 2009)
- If powered solely by star-formation this would imply a SFR of ~1600 $M_{\odot}/year!$
- L_{2-10keV} ~ 2 x 10⁴⁴ erg/s (Nandra & Iwasawa 2007)
- If powered solely by star-formation this would imply a SFR of >12000 $M_{\odot}/year!$

Consistent-ish SFRs

- Despite the extremely high infrared luminosity, near and mid-IR diagnostics suggest that no more than 30% is due to starformation
 - − <30% of 9 x 10¹² L_{\odot} =~<3 x 10¹² L_{\odot} → SFR ~<540 M_{\odot}/year

Recall that this is an upper limit

- X-ray diagnostics suggest the SFR is ~310 $M_{\odot}/year$
- The CO luminosity we derive from our ATCA observations suggest the SFR is 220 $M_{\odot}/year$
- F00183 is still very star-bursty but no longer super insanely so...

What this means and what next?

- F00183 harbours both a powerful AGN and large amounts of star-formation...
- ...but not as large as we had thought
- If the evolutionary scenario is believed, this suggests that F00183 is at a late stage in its merger and the star-formation is ramping down as the AGN ramps up
- That is, all evidence is consistent with the AGN in F00183 transitioning between quasar-mode and radiomode

F00183-7111

F00183 may represent objects that are at the end of their "ULIRG" period...

F00183-7111

F00183 may represent objects that are at the end of their "ULIRG" period...

What this means and what next?

- The majority of ULIRGs studied to date are star-formation dominated
- The contribution to the total energy budget by AGNs discovered in ULIRGs appears to vary greatly
- Lonsdale et al. 1995 find a relation between core radio power and bolometric luminosity for radio-quiet QSOs
- What is the incidence of radio-loud sources in ULIRGs?
- Hypothesis: ULIRGs harbouring radio-loud sources in their cores should have a smaller contribution from star-formation to their total infrared luminosity.

What this means and what next?

- **Hypothesis**: ULIRGs harbouring radio-loud sources in their cores should have a smaller contribution from star-formation to their total infrared luminosity.
- How can we test this in the radio regime? CO traces star-formation while (at high enough redshifts) a VLBI continuum detection is almost certainly due to the presence of an AGN. Using these two diagnostics with a sample of ULIRGS should enable us to determine the contribution of each to the total energy budget...

Summary/Conclusions

- We have detected CO(1-0) in F00183 and the CO luminosity we derive suggest the SFR is 220 $M_{\odot}/year$
- This is consistent with IR and X-ray studies of this object
- We find this ULIRG to be AGN dominated and suggest this source is nearing the end of its "ULIRG" phase and thus star-formation may be ramping down
- The relative scarcity of AGN dominated ULIRGs may attest to how short-lived this period may be...