

How accurately do our imaging algorithms reconstruct intensities and spectral indices of weak sources ?

Urvashi Rau, Sanjay Bhatnagar, Frazer Owen (NRAO)

29th Annual New Mexico Symposium, NRAO, Socorro, 17 January 2014

VLA Wide-band wide-field simulations : (LEFT) L-Band, C-config, 1-pointing , (RIGHT) C-band, D-config, 46 pointings

Simulation Parameters : One Pointing, L-Band (1-2 GHz), C-config

- Sky : ~8000 point sources within one deg^2 (SCube) Sources at pixel centers (+ compared with not)
- Intensity : between 1 micro Jy and 7 mJy. (+ one 100 mJy source for HDR test)
- Spectral indices : between 0.0 and -0.8.
- Observation : 16 channels/spws across 1-2 GHz One snapshot every 20 minutes, for 4
- hrs

(compare with one snapshot every 2 minutes, for 4 hrs)

Data Prediction: Visibilities were calculated using the Wideband A-Projection de-gridder. No noise.

PB (time)

PB (freq)

PB (pol)

+

Low dynamic range test (< 10⁴) – compare four methods

(Reconstructed / True) Intensity for different intensity ranges

Locate sources in true image. Plot all sources >1 micro Jy. (Brighter sources are more accurate)

NRAO

Spectral index for brighter sources are more accurate. Degrades quickly with lower intensity. (note different numbers of sources with alpha detections)

High dynamic range test (>10^4) - compare four methods

Details : validating simulations and testing algorithm limits

NRAO

Cube Imaging with a Joint Mosaic (Ap=F) and PBCOR per SPW

 $(Jy/beam) \times 10^{-5}$ 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Intensity : Reconstructed / True 100 80 60 40 20

1.0

1.5

2.0

8.0

0.5

Cube Imaging with a Joint Mosaic (Ap=T) and PBCOR per SPW

(Jy/bearn) x10⁻⁵ 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Joint Mosaic with Wideband AW-Projection and MT-MFS (nt=2)

 $(Jy/bearn) \times 10^{-5}$ 0.2 0.4 0.6 0.8 Í1 1.2 1.4 1.6 1.8 0 Intensity : Reconstructed / True 450 All 1448 sources 400 S>5.0µJy (505) 350 $S > 20.0 \mu Jy (150)$ 300 250 200 150 100 50 8.0 1.5 2.0 0.5 1.0 Alpha : Reconstructed - True 180 All 505 sources 160 S>10.0µJy (297) 140 S>50.0µJy (33) 120 100 80 60 40

0.5, 1.0 1.5 2.0

20

-2.0 -1.5 -1.0 -0.5 0.0

Joint Mosaic with Wideband AW-Projection and MT-MFS (nt=2)

(Jy/bearn) x10⁻⁵ 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

- Work in progress to con EN1DEEPOS. 3C465 IPOL 1515.000 MHZ - Wideband wide-field 3C 465 - Even in perfectly con²⁷ 10 VLA L-Band (from F.Owen) the astrophysical inte 08 Demonstrations on wide 06 - Single pointings : A2 04 Band, Pla 02 Mosaics : CTB80 field Centaurus-00 More simulations 26 58 Add calibration error 56 (Kara Kundert / underg 54 Add source polarizat (Preshanth Jagannatha 52 23 39 15 30 00 37 45 00 38 45 15 Right Ascension (USUUU)