VLBI and Archival VLA and WSRT Observations of the GRB 030329 Radio Afterglow

5 Years at 5 GHz

Bob Mesler University of New Mexico

28th NRAO Symposium 30 November, 2012

Talk Outline

- Introduction
- GRB 030329
 - VLA/WSRT Light Curve
 Monitoring
 - VLBI
 - Size Evolution
- Burst Calorimetry
- Future Work
 - Pop III GRBs
 - Other GRB afterglows?

The Fireball-Shock Model

- The Model
 - Material in a black hole accretion disk is expelled in twin polar jets
 - Jets are highly relativistic, implying strong beaming
 - ~10⁵¹ erg is released in a few minutes or less
 - jets propagate into surrounding medium
 - jets slow as they sweep up material, decreasing the importance of beaming
 - Observed image expands due to decrease in beaming and then lateral expansion of the jet
- Typical properties of a GRB afterglow
 - Power law spectrum separated by breaks
 - Break frequencies time dependent, can lead to breaks in the light curve
 - Temporal index of light curves dependent upon the density profile of the circumburst medium

GRB 030329

- Brightest radio afterglow ever detected at radio frequencies (55 mJy at 43 GHz)
- Relatively close to Earth
 - -z = 0.1685
 - d = 587 Mpc
- Only GRB to ever be resolved with VLBI
- Detectable at 5 GHz by VLA through 2008

VLA/EVLA and WSRT Observations

- Source observed at 5 GHz from 59 1828 days after the burst
- Peak flux at 5 GHz was 11.6 mJy
 - Brightest GRB ever recorded at this frequency
 - Unusual intensity allowed radio afterglow to be detectable by EVLA through at least 2008

• Source decays with clear power law with $\alpha = -1.27 \pm 0.03$

5 GHz Radio Light Curve

Flux Density (mJy)

Estimating the Density Profile from the 5 GHz Light Curve

- The density profile can be calculated from the temporal index α and the spectral index β
- Density profile is assumed to be of the form

$$\rho(r) \propto r^{-k}$$

• The power law k can be found using

$$k = \frac{5\alpha - 15\beta + 3}{\alpha - 4\beta + 2}$$

$$k = 1.1 \pm 0.2$$

 $\beta = 0.54 \pm 0.2$ (van der Horst et al. 2008)

• This method is highly-dependent upon the choice of tNR, and can only provide an estimate of the circumburst medium density profile

VLBI Observations

- Models of linear size at early times
 - Source unresolved until day 83
 - Estimate of angular size attained through model-dependent estimation of the quenching of the scintillation
 - Large uncertainties due to reliance on imperfectly understood properties of the ISM
 - Direct measurements of linear size
 - Proximity to Earth make this the only GRB to ever be resolved by VLBI
 - Direct observations put much-needed constraints on the models

Comparison with the Models

Burst Calorimetry

- A semi-analytic method is in development for producing synthetic light curves for GRB afterglows
- Broadband afterglow observations and direct size measurements can be used simultaneously to find a best-fit model and determine the burst parameters

Future Work

- Can we detect GRBs produced by Population III stars?
 - Doing so would provide first direct evidence of Pop III stars
 - MHD / emission model can handle arbitrarily complicated density profiles
- VLBI observations of another GRB
 - Right now our sample size is exactly one
 - Wishful thinking?

Acknowledgements

- Ylva Pihlström
- Greg Taylor
- Jonathan Granot

Gamma Ray Burst Emission

- Prompt Emission
 - Predominantly gamma rays
 - Short duration (a few minutes or less)
 - Internal shocks
- The Afterglow
 - X-rays, UV, optical, IR, and radio
 - Long duration (days to years)
 - External shocks (collisionless)
 - Synchrotron

Density Profiles

- Wind-like Medium
 - Stellar wind from evolved star blows bubble into ISM
 - Density within bubble is characteristic of r⁻² density wind
- Uniform Density Medium
 - Characteristic of the ISM
 - Not expected for a stellartype progenitor

GRB 030329 Afterglow Angular Size

Afterglow Expansion Rate

