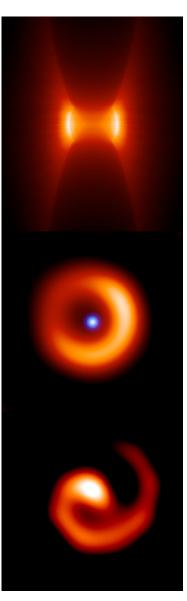
Update on the Magdalena Ridge Observatory Interferometer

M. J. Creech-Eakman New Mexico Tech – MROI Proj. Scientist On behalf of the NMT and Cambridge Teams

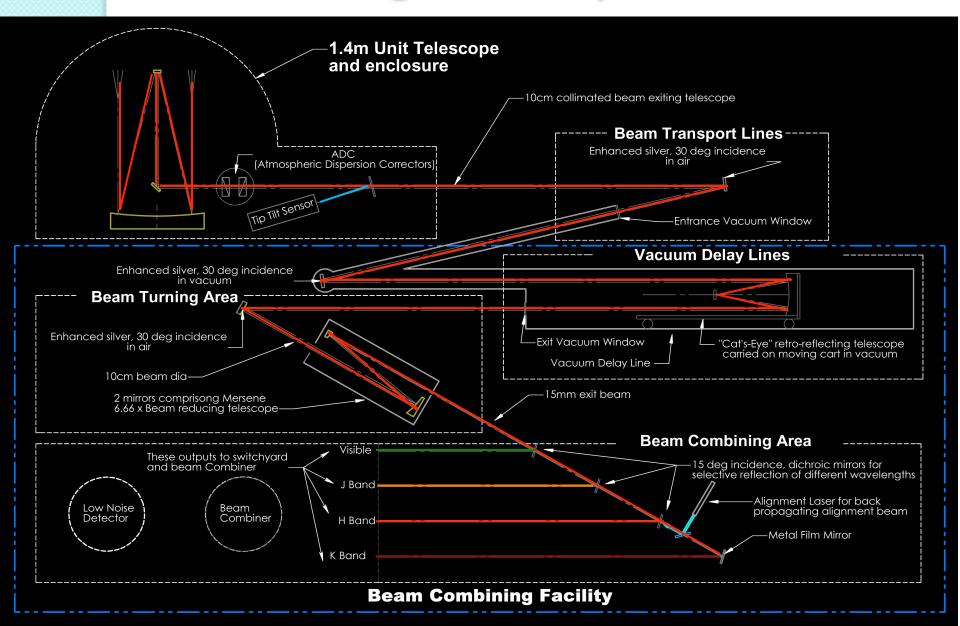

Magdalena Ridge Observatory

Federally funded 2000-2011 EIS completed in 2003 Two facilities at MRO Fast-tracking 2.4m • NIR/Optical 10-element interferometer 2.4m scope started full operations Aug, 2008 Primarily NASA/DoD funded

MROI is 10 1.4m movable.afoca telescopes in equilateral Y configuration **Optical** and near-IR operation Baselines from 7.8 to 340m Designoptimized for imaging mission

MROI Key Science Mission

- AGN:
 - Verification of the unified model.
 - Determination of nature of nuclear/extra-nuclear starbursts.
 - H = 14 gives > 100 targets.
- Star and planet formation:
 - Protostellar accretion, imaging of dust disks, disk clearing as evidence for planet formation.
 - Emission line imaging of jets, outflows and magnetically channeled accretion.
 - Detection of sub-stellar companions.
- Stellar accretion and mass loss:
 - Convection, mass loss and mass transfer in single and multi-star systems.
 - Bipolarity and collimation of circumstellar material, wind and shock geometries.
 - Pulsations in Cepheids, Miras, RV Tauris, etc.



Technical Requirements Flowdown

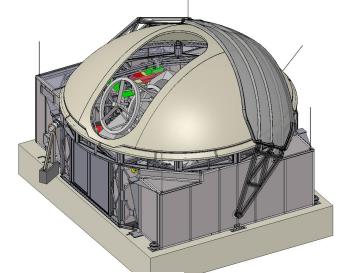
- Telescope diameter of 1.4 m
 - H magnitude = 14th for group delay tracking limit
- Spatial scales of 0.3 to 30 mas
 - Baselines from 7.8 to 340 m (for 0.6-2.4 microns)
- Moderate-to-high spectral resolutions
 - Separate fringe tracking and science cameras
- High throughput to achieve sensitivity limit
 - Fifteen reflections from primary to detectors
 - Optimized coatings for 0.6-2.4 microns
- Large number of telescopes rapidly combined
 - Optimized for model-independent imaging

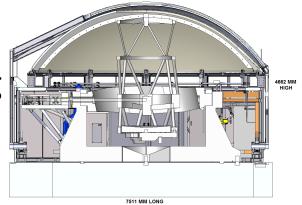
Walk through the Optical Path

Unit Telescopes

- Designed/built by AMOS
 - 1.4m aperture
 - afocal alt-alt design
 - polarization preserving
 - 62 nm rms wavefront after three reflections
 - UTI expected to arrive next year
 - UT2-3 long-lead items ordered and being assembled

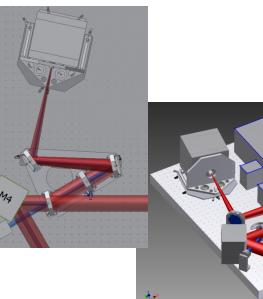
NM Symposium - No

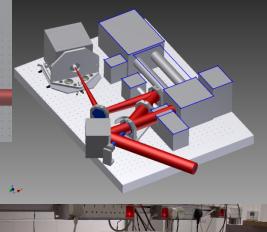


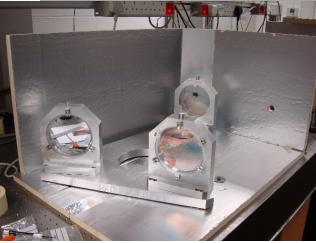


Optics & UT Enclosures

- Enclosures Designed by EIE
- Houses and transports UTs
- Allows close-packed configuration to 30 deg elevation without vignetting for 6 hour tracks
- 6 full sets of optics in house
 - All M2's and M3's completed
 - First 3 MI's in various states of completion







Fast Tip-tilt & Acquisition System

- At an advanced stage of construction in Cambridge:
 - Full-scale prototype under test
 - Majority of software complete
- Uses Andor EM CCD head
- Transmissive optics
 - High throughput and relaxed tolerances
- Fully passive opto-mechanical design:
 - No actuation to meet stability requirements
- V-band sensitivity of 16:
 - Good match to reddest targets

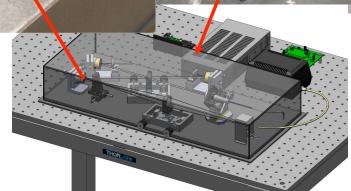
Foundations and Beam Relay System

completely d by M3 and built

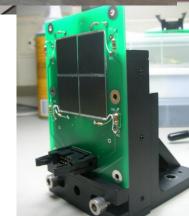
ingent thermal, ility and e requirements 3 UTs per with 0.5 mbarr om UT to BCA piers for inner an 2010 Il components of d alignment

Inner Array Install

5 piers installed with infrastructure being added as funds become available



Automated Alignment System


• Designed and built by

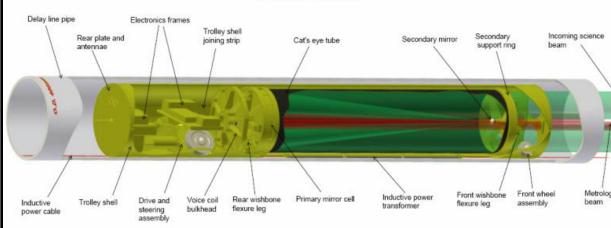
IR Fiber Focus OAP Focus Lens Pinhole Collimating

> experiment – poster upstairs

ungsten Bulb

Braeadboard

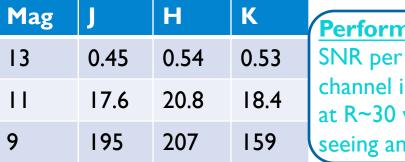
Beam Combining Facilities


- Design by M3/built KL House – delivered in 2008
- Thermal & vibrational stability
- Supports full array
- Single-pass DL section 190 m long

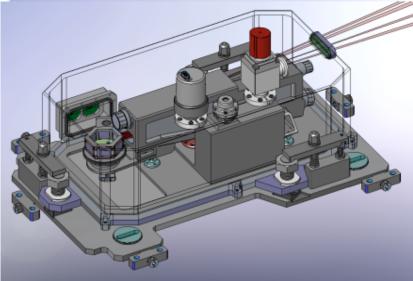
Delay Lines

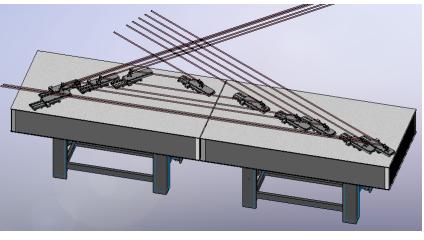
- Designed/built
 Cambridge
- Innovative approach
- Inductive pick-up & wireless communications
- DLI install to about 100m
 - <0.5mm subsidence over I year</p>
 - <0.5" metrology pointing stability over weeks

MROI Delay Line Trolley

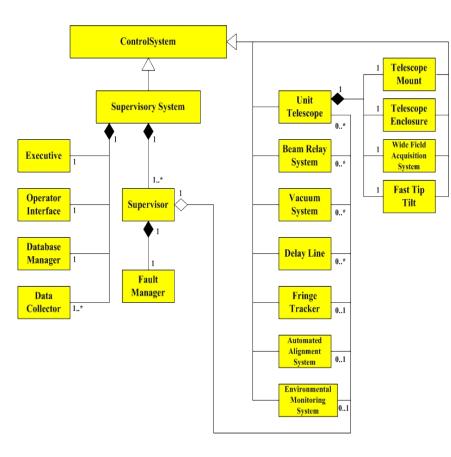

Fringe Tracker - ICoNN

- Designed/built by MRO
- •Operates H or Ks
- •Coatings designed in-house
- Uses nearest-neighbors
 combination
- Dewar arrived last fallCLFE Poster upstairs




Science Instrument - SIRCUS

- MRO conceptual design phase
- J,H,K with R~30 and 300; studying higher R
- Potential design: 4-way image plane combination with fastswitching to combine 6 beams in ~100 sec



Software infrastructure

Architecture and Framework:

- Centralized Supervisory System controls distributed systems
- Automatic Interface code generation based on sub-system descriptions
- Sub-system s/w developed in Java or C
- Standalone testing of sub-system s/w
- Comprehensive simulation framework
- Status of major sub-system software:
 - UT mount complete (via simulator)
 - WAS complete
 - Environmental Monitoring System complete
 - FTT in development
 - Fringe Tracker system in development
 - Enclosure software designed, not yet implemented

Funding & Schedule Issues

- Need \$45M over next 6.5 years to get 4 telescope facility operational – mix of Federal, State, institutional, philanthropic and partner funding
- Have DOT fund to build a visitor center and maintenance facility on Ridge → allow testing of UT I
- No more Federal earmarks*
- Currently operating on university bond funds
- Plans to go for State Funding:
 - Applying for Severance Bond in Jan 2013 Session (Attain first fringes in 3Q 2015)
 - Applying for GO Bond in Nov 2013 (Add UT3 capabilities in early 2016)
- Plans to pursue Mid-Scale funding after first fringes
- Looking for university or potential consortium partners

Thank you for your attention!

- <u>PI</u>:Van Romero
- <u>Deputy PI</u>: R. Cervantes
- <u>Prog. Director</u>: I. Payne
- <u>System Architects</u>: C. Haniff, D. Buscher
- <u>Proj. Scientist</u>: M. Creech-Eakman
- <u>Proj. Manager:</u> R. Selina

- <u>NMT Team</u>: M. Edwards, A. Farris, D. Klinglesmith, T. McCracken, A. Olivares, C. Salcido, A. Shtromberg, a few student assitants
- <u>Cam. Team</u>: R. Boysen, J. Coyne, M. Fisher, B. Seneta, D. Sun, D. Wilson, J. Young

