The LCROSS Ejecta Plume Revealed: First Characterization from Earth-based Imaging

Charles Miller¹, Nancy Chanover¹, Brendan Hermalyn², Paul Strycker³, Ryan Hamilton¹, Robert Suggs⁴

American Geophysical Union Fall Meeting December 3, 2012 ¹New Mexico State University ²University of Hawaii/NASA Astrobiology Institute ³University of Wisconsin-Platteville ⁴NASA/Marshall Space Flight Center

LCROSS Mission Overview

- Upper stage booster for LRO dropped onto the floor of Cabeus crater on 09 October 2009
 - Impact velocity = 2.5 km/s
 - Impact angle of 85° with respect to the crater floor
 - Impact mass of 2000 kg
- Observed from above by Shepherding Spacecraft (SSC), from LRO, and Earthbased observatories
 - Volatiles (H₂O) detected by SSC

Apache Point Observations

- APO 3.5 m + Agile visible light frame transfer camera
- 0.5 sec exposures
- 0.46km/pix (0.26"/pix)
- Seeing around 1.3"
- V-filter + ND

Chanover et al. 2011 - JGR

V-band upper limit of 9.5 mag/arcsec²

Principal Component Analysis (PCA) Filtering

Component 1 Average image

Component 2 Seeing (PSF width)

Component 3 x alignment jitter

Component 4 y alignment jitter

PCA Filter

Remove 1st four components from image sequence

Brightness Plot Grid

- Summed 16 pixels/grid box (4 x 4)
- Boxcar time average over 5 frames (2.5 sec)
- Plotted summed 16 pixel values for each grid box over time

Observed Plume Light Curves

Synthetic Plume Verification

Two Component Synthetic Plume

NASA Ames Vertical Gun

Simulation

Schultz et al. 2010, Hermalyn et al. 2012

Low-angle Synthetic Plume

Add Conical High Angle Plume

Add Central High Angle Plume

Plume Brightness and Mass Estimates

V-band surface brightness (mag/arcsec²)

Observed plume

9.99 @ impact +16 s (max)

10.25 @ impact +20 s

Best match synthetic plume (before atmospheric distortion,

noise, and PCA filter)

9.60 @ impact +11.5 s (high-angle)

9.91 @ impact +20 s

- Optical depth at impact +20 s
 0.0017 (albedo=0.17) to 0.0042 (albedo=0.07)
- Total mass above Sun height @ +20 s
 2470 kg to 6000 kg (average = 3477 kg)
 Particle radius 2.5 µm and density of 3300 kg/m³
 High angle plume 22% of illuminated mass

Future Modeling Improvements

Introduce a particle size-velocity distribution

- Simulation model currently assumes all particles equal size/brightness
- Introduce a particle albedo-velocity distribution
- Streamline the verification procedure to allow automated parameter optimization

Summary

- Positive LCROSS plume detection in V-band
- Two component plume simulation needed to match observed light curves
 - Low-angle plume of $35^{\circ} \pm 5^{\circ}$
 - High-angle plume of 55 75° (conical) and 75 90° (central) with different low velocity cutoffs
- Maximum V-band plume brightness at impact +16 s of 9.99 mag/arcsec² (z=3.6 km)
 - Peak optical depth of 0.0017 to 0.0042
 - Illuminated mass @ impact +20 s of 2470 6000 kg
 - High-angle plume is 22% of total illuminated mass

Questions

Real Time Best Match Plume Simulation

Sun height = 0.83 km

1.84 km

Albedo Change with Depth?

Best Match Synthetic Plume

Impact Site

Apache Point Observations

- APO 3.5 m + Agile visible light frame transfer camera
- 0.5 sec exposures
- 0.46km/pix (0.26"/pix)
- Seeing around 1.3"
- V-filter + ND

Observation Limits

Upper plume surface brightness limit of 9.5 magnitudes/arcsec²

Chanover et al. 2011 - JGR

Per-pixel 3- σ V_band noise limit map

Calibrated per-pixel V-band surface brightness map of Cabeus crater