

Near-Earth Asteroids And Radar Speckle Tracking

Michael Busch

Near-Earth Asteroids

Near-Earth asteroid Itokawa, imaged by the Hayabusa spacecraft. ~450 *m long.*

Inner Solar System from ecliptic north. Red dots are objects on Earth-crossing orbits

Yarkovsky & YORP Effects

Ivan Osipovich Yarkovsky, circa 1900.

Radar Astronomy

Radar Speckle Tracking

Schematic of radar speckle tracking. As the speckle pattern moves across the Earth, speckles are received at different times at different antennas. Time lag exaggerated for clarity.

An Example: 2003 UV11

Delay-Doppler radar images of 2003 UV11, with 15-m range resolution. Times are in 2010 October.

Like Itokawa and 10-15% of all near-Earth asteroids larger than 200 m, UV11 is a contact-binary asteroid. Its shape consists of two lobes in mutual contact.

UV11's Pole Direction

UV11's obliquity is ~104°. The asteroid's spin axis is nearly in its orbit plane.

Contact Binary Obliquities

<u>High-Obliquity</u>				<u> Objects (50º - 130º)</u>							
Object			Obliquity (°)					Reference			
Mithr	a	68	±	6	or	105	±	6	Brozovic et al. 2010		
Castalia		126	±	13	or	74	±	13	Hudson et al. 1997		
2003	UV11	104	±	4					Busch et al. 2012		
Bacch	nus	110	±	20					Benner et al. 1999		
1996	HW1	129	±	5					Magri et al. 2011		
Sigurd		70	±	20	or	110	±	20	Busch et al. in prep		
2004	XL14	57	±	18	or	123	±	18	Busch et al. in prep		
1999	RD32	108	±	20	or	75	±	20	Nolan et al. in prep		

<u>Low-Obliquity Objects</u>											
2000 YF29	20	±	30	or	160	±	30	Busch et al. in prep			
Toutatis*	146	±	3					Ostro et al. 1999			
Itokawa	178	±	4					Demura et al. 2006			

Is There An Excess of High Obliquities?

S/11 → 73 ± 16 % of contact binary NEAs have obliquities between 50° and 130°.

○ 10/25 → 40 ± 13% of other single NEAs.
○ 3/9 → 33 ± 19% of binary and triple NEAs

If the excess is real, what causes it?