The massive red sequence of cluster galaxies at redshift 1.4

Veronica Strazzullo
NRAO

Piero Rosati, Maurilio Pannella, Chris Lidman, Chris Mullis,
Ricardo Demarco, Raphael Gobat, Mario Nonino

The 25th New Mexico Symposium
The red sequence

RXJ0153 (z=0.83) CL0016 (z=0.55) SDSS (z=0)

field field field

group group group

restframe U-V (Vega) restframe V (Vega)

Tanaka et al. 2005
The red sequence (color-mass)

Environmental dependence

underdense

overdense

SDSS Baldry et al. 2006
Environments at high redshifts

The need for high redshift

- Deep surveys probe environments only up to group densities. To probe the highest density environments need to find (elsewhere) and follow up massive clusters.

- “Time machine” vs “fossil record” approach: probe both star formation and mass assembly history.

- The closer the observations to the formation epoch, the tighter the constraints we get.
Clusters red sequence(s)

model redshift evolution of the red sequence
(apparent magnitudes and colors)
(Kodama & Arimoto 1997 models)
Clusters red sequence(s)

model redshift evolution of the red sequence
(apparent magnitudes and colors)
(Kodama & Arimoto 1997 models)
The red sequence of galaxy clusters may be observed as a conspicuous feature in color-magnitude diagrams at all redshifts.

XMMU J2235-2557

- X-ray luminous massive cluster at $z=1.39$ (Mullis et al. 2005)

- The most massive cluster known at $z>1$
 ($L_{X,bol}<1\text{Mpc} \sim 10^{45}\text{erg/s}$, $M_{200} \sim 6 \times 10^{14}M_{\text{sun}}$, $M_{\text{proj}<1\text{Mpc}} \sim 10^{15}M_{\text{sun}}$)

- Multi-wavelength coverage (X U R i z J H Ks $3.5\mu\text{m}$ $4.6\mu\text{m}$) from Chandra, VLT, HST, Spitzer

- Extensive spectroscopy secured 30 cluster members

- A well evolved structure at $1/3$ of the Universe age
The red sequence at $z \sim 1.4$

The color-magnitude diagram in the core of XMMU J2235
The red sequence at $z \sim 1.4$

The color-magnitude diagram in the core of XMMU J2235

obvious interlopers removed (spec. and photo-z)
The red sequence at $z \approx 1.4$

obvious interlopers (spec. and photo-z) and disk galaxies removed
The red sequence at $z \approx 1.4$

A clear, tight red sequence is already in place, dominated by massive early types.

The bulk of the stellar populations formed at $z \approx 3$.

Bright galaxy populations in cluster core dominated by massive early types, hosting ~passively evolving stellar populations.
The red sequence at $z \sim 1.4$
The mass-size relation at $z \sim 1.4$

- Local early types, SDSS (Shen et al. 2003)
- XMMU J2235 red sequence early types
Models: semi-analytical predictions

Menci et al. 2008
Models: semi-analytical predictions

Menci et al. 2008
Models: hydrodynamic simulations

Hopkins et al. 2010
Models: hydrodynamic simulations

- Tracks of Individual Galaxies
- Identical Dry Mergers
- Minor/Late Accretion
- Adiabatic Expansion
- M/L Gradients
- Observational Effects
- M$_*$ Uncertainties

Hopkins et al. 2010
Outlook

- A tight red sequence of massive early types is already in place at 1/3 of the Universe present age

- Stellar populations formed at high redshift

- Stellar masses $>10^{11} M_{\text{sun}}$ already assembled in single galaxies

- Evolved morphology, but smaller sizes (more compact than local)

→ redshift ~ 1.5 already too late for big action in the most massive structures (go to $z>2$ protoclusters)

→ explore gas content, fraction and evolution

→ not just red sequence galaxies - probe the starforming populations