
EVLA Observations of the Orion Hot Core: a Taste of the Future

Claire Chandler

on behalf of NRAO-NM staff

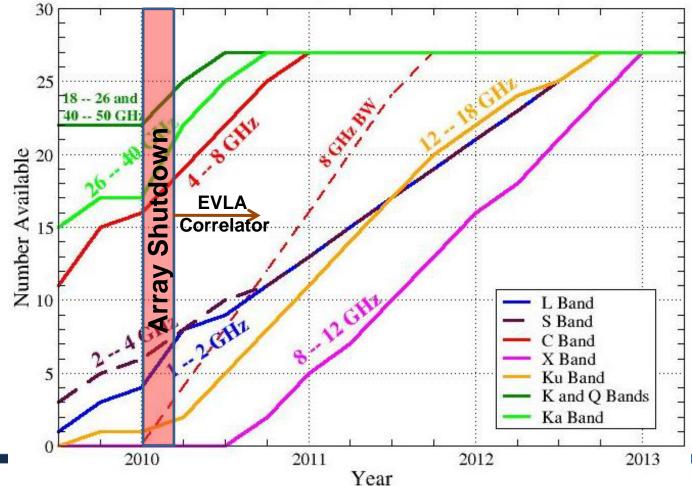
Atacama Large Millimeter/submillimeter Array
Expanded Very Large Array
Robert C. Byrd Green Bank Telescope
Very Long Baseline Array

EVLA

The EVLA

- The Expanded Very Large Array is a \$90M upgrade of the Very Large Array; project began in 2001, will be completed in 2012, on time, on spec, on budget
- The EVLA will multiply by orders of magnitude the observational capabilities of the VLA. Key goals are:
 - Full frequency coverage from 1 to 50 GHz.
 - Up to 8 GHz instantaneous bandwidth.
 - New correlator with unprecedented capabilities
 - $\sim 3 \mu Jy (1-\sigma, 1-hr)$ point-source continuum sensitivity at most bands.
 - $\sim 1 \text{ mJy } (1-\sigma, 1 \text{ km/s}, 1-\text{hr}) \text{ line sensitivity at most bands.}$
- New receivers; new data transmission system; new correlator. See http://science.nrao.edu/evla/publications/meetandpresent.shtml for presentations with more technical detail

Milestones and current status


- 26 of 28 antennas now converted to EVLA standards; antenna conversion complete by July 2010
- VLA correlator was shut down on Jan 11
- New EVLA correlator made by HIA/DRAO, Canada, awakens early February
- EVLA Early Science begins in March 2010
 - OSRO and RSRO programs begin March 2010 and continue through end of 2012
- 2 GHz bandwidth initially, full bandwidth (8 GHz) implemented on all antennas mid-2011
- Receiver implementation completed end of 2012

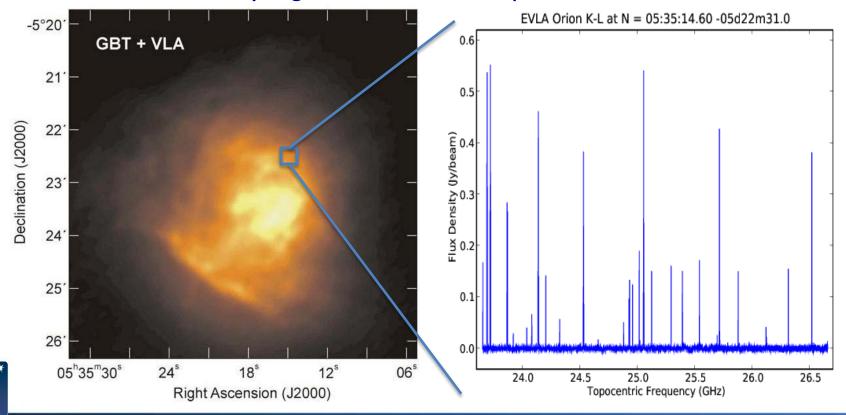
Availability of EVLA receivers/bandwidth

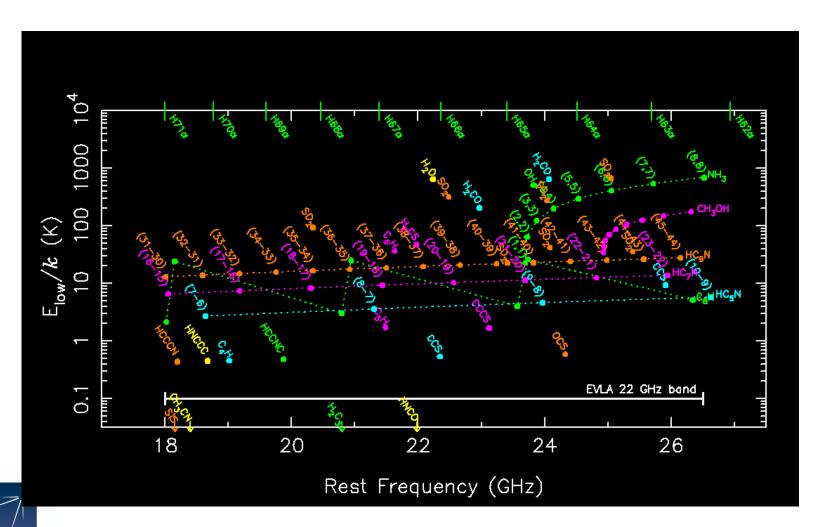
 VLA or "interim" receivers will continue to be available at L, C, and X-band in addition to those shown below

EVLA correlator capabilities

- Major capabilities:
 - 8 GHz maximum instantaneous bandwidth, with full polarization
 - From 16384 (min) to 4.2 million (max) frequency channels
 - 64 independently tunable full polarization sub-bands, each of which is effectively an independent 'sub-correlator'
 - Extensive special modes: pulsar gating/binning, phased array, VLBI, burst modes, and more
- Fundamental capabilities will be developed first, with specialty modes later

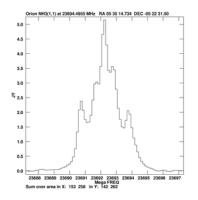
Demonstration Science


- A 12-antenna sub-array has been used to test a subset of the final correlator
- The test configuration provides:
 - 8192 channels
 - Full polarization
 - Eight adjacent sub-bands
- To illustrate the capabilities of the correlator we have observed the Orion Hot Core at $\lambda \sim 1.2$ cm:
 - 3 x I GHz coverage
 - 24,000 channels with 1.5 km/s spectral resolution
 - $-\theta \sim 3$ arcsec


Orion Hot Core

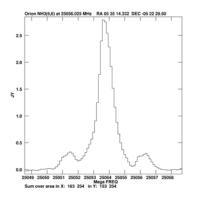
- The hot core lies in the molecular cloud behind the nebula
- Hot cores are thought to be signposts of the earliest phase of massive star formation; rich chemistry, high densities and temperatures

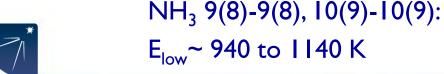
Transitions in K-band 18-26.5 GHz window


Orion Hot Core line IDs

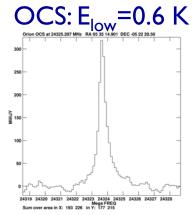
- Ammonia, NH₃
 - 8 lowest meta-stable inversion transitions (J,K) = (1,1) to (8,8)
 - (6,6) line from ¹⁵NH₃ isotopologue
 - the 4(1,4)-4(0,4) line from NH₂D
 - meta-stable (9,8) & (10,9) lines
- Methyl formate, CH₃CHO
 - two E/A doublets
- Carbonyl sulphide, OCS
 - $J=2\rightarrow I$ rotational transition
- Sulphur dioxide, SO₂
 - Three transitions
- Methanol, CH₃OH
 - Ten maser lines from J=2—10 series, E-type
 - arious unidentified and weak lines

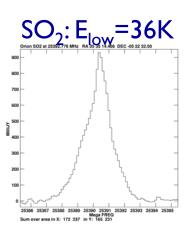
Spatial distribution: NH₃

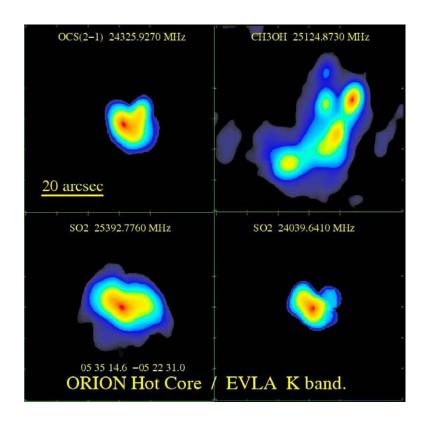

 NH_3 (I,I): $E_{low} = 23 \text{ K}_1$

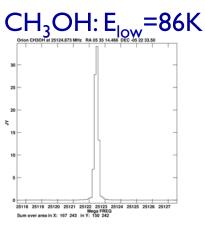

Low-energy NH₃ transitions trace cooler, extended molecular gas in the surrounding cloud

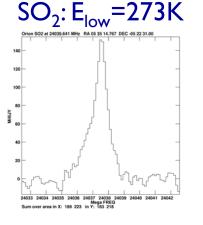
 NH_3 (6,6): $E_{low} = 408 \text{ K}$

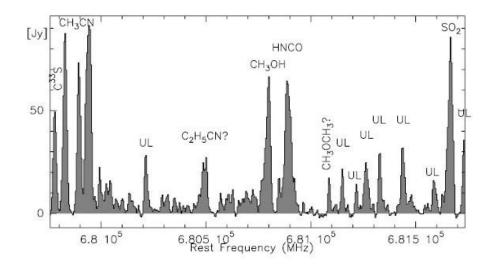

High-energy NH₃ transitions pinpoint location of a central heating source in the hot core








Spatial distribution: S/O-bearing molecules


Credits: Eric Greisen, Vivek Dhawan, Steve Myers

See also: full spectrum and images in poster upstairs

Compare with what ALMA can expect:

• 2 GHz of spectrum at 690 GHz from the Submillimeter Array (Beuther et al. 2006):

- No line-free continuum, many line blends!
- Play with the EVLA Demo Science data cube yourself:
 - ttp://science.nrao.edu/evla/projectstatus/

How you can be part of the EVLA future

- Open Shared Risk Observing (OSRO):
 - Observers will access EVLA in the same way as for the VLA
 - Initial configuration provides 512 spectral channels with one or two sub-bands of 128 MHz (maximum) each, dual or full polarization; see the EVLA Observational Status Summary for full details:
 http://science.nrao.edu/evla/proposing/obsstatsum.shtml
 - Observing begins March 2010
- Resident Shared Risk Observing (RSRO):
 - Must be resident in Socorro for at least 3 months
 - Participants will assist NRAO staff in expanding capabilities
 - Participants will have access to more extensive observing capabilities
 - Observing time proportional to length of residency
 - 27 proposals received on first call, I3 have been accepted

or details, see: http://science.nrao.edu/evla/earlyscience/