Theory and Simulation of Relativistic Jet Formation

David L. Meier Jet Propulsion Laboratory California Institute of Technology

> 200th AAS Meeting Albuquerque, N.M. 2-6 June, 2002

Acknowledgements

Collaborators

- <u>General Relativistic simulations</u>: S. Koide (Toyama University),
- K. Shibata, T. Kudoh (National Astron. Obs, Japan) – <u>Pseudo-relativistic simulations</u>: D. Payne (Intel),
- K. Lind (Silicon Graphics), S. Edgington (Caltech), P. Godon (Space Telescope)

• Additional Suppliers of Movies and Other Data

- Y. Uchida (Science Univ. of Tokyo);
- M. Nakamura (SUT; JPL)
- R. Krasnopolsky (Caltech)

Conclusions

- All relativistic cosmic jet sources may be connected by a common basic mechanism
 - A promising model for that is magnetohydrodynamic acceleration by rotating, twisted magnetic fields
 - "Spin Paradigm" can explain qualitatively a number of statistical properties of AGN
 Geometrically thick accretion flows are more efficient at launching jets
 - In Microquasars this principle may explain the correlation between the production of a jet and the presence of a hot, geometrically thick accretion flow
 This also may be testable in some Seyfert AGN as well
 - Slow acceleration and collimation of these jets is probably the norm • There is some evidence for this in AGN jets
 - Highly relativistic jet flows may be produced by strong, straight magnetic fields
- All galactic cosmic jet sources, including supernovae and gamma-ray bursts, may be connected by a common origin as well: different outcomes of the last stage of evolution in a massive star
- It may be possible to investigate the formation of microblazars in ancient times by studying the record these events left on solar system bodies such as the moon

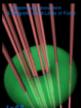
Relativistic Cosmic Jet Sources

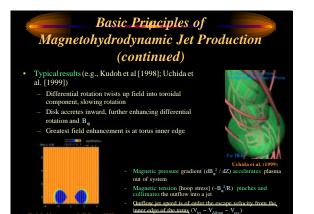
• Extragalactic/supermassive sources (all AGN)

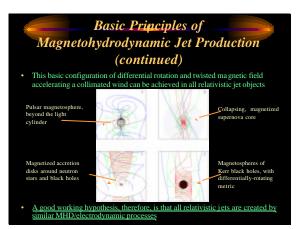
- Radio galaxies & radio-loud quasars (Γ_{jet} <15): Associated with elliptical galaxies and most massive black holes (10⁸-10¹⁰ M_{\odot})
- Seyfert galaxies & radio-weak QSOs (Γ_{jet} < few): Associated with spiral bulges and less massive black holes (10⁶-10⁸ M_{\odot})
 - Seyfert 1s: central engine visible
 - Broad line (BLS1s): <10⁴ km s⁻¹; softer X-ray spectra
 - Narrow line (NLS1s): <5000 km s⁻¹; hard X-ray spectra
 - Seyfert 2s: central engine hidden by dusty torus
- Broad absorption line (BAL) QSOs: usually radio weak; have
- a deficit of radio loud objects; NO known FR II BAL quasar

Relativistic Cosmic Jet Sources (cont.)

· Galactic/stellar-mass sources


- Classical microquasars (v_{jet} ~ 0.6-0.95c, \(\Gamma_{jet}\)~1.25-3): GRS 1915+105, GRO J1655-40, GX 339-4 etc. Accreting, rapidly-rotating black holes.
- Gamma-ray Bursts ($\Gamma_{jet} \sim 100-300$): "microquasars in formation"
- SS433 (v_{jet} $\sim 0.25c$): probable heavily-accreting, magnetized neutron star
- Isolated pulsars (v_{jet} ~ 0.5c): Crab, Vela, *etc.* jets detected and imaged with Chandra
- Core-collapse supernovae ($v_{jet} \sim v_{esc}$ [proto-neutron star] ~ 0.1c): there is growing evidence that SN are powered by jets (Wheeler, Meier & Wilson 2002)


Basic Principles of Magnetohydrodynamic Jet Production

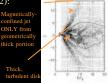

- Basic MHD mechanism:
 Blandford (1976); Lovelace (1976)

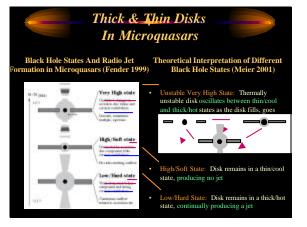
 - Acceleration by rotating black holes (Blandford & Znajek [1977])

 - Acceleration by rotating [thin] accretion disks (Blandford & Payne [1982])
- First numerical simulations: Uchida & Shibata (1985)
- Key ingredients in their "Sweeping Pinch" mechanism
 Thick accretion disk or torus
 - Keplerian differential rotation ($\Omega \propto R^{-32}$)
 - Initial <u>strong</u> vertical magnetic field
 - (strong enough to slow disk rotation)
 - $J \times B$ force splits up into magnetic pressure and tension: - $\nabla (B^2 / 8\pi) + (B \bullet \nabla B) / 4\pi$

Field Lin

Ergosphere

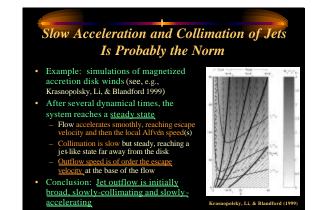

- Kerr hole (*a/M*=0.99995) accreting magnetized plasma: Koide, Shibata, Kudoh, & Meier (2002)
- While plasma is carried into the hole only (not ejected),
- This Poynting Flux power should eventually be turned into particles and a very fast jet Similar, but not identical, to Blandford - Znajek process
- Magnetic field is tied to infalling plasma, <u>not horizon</u> Frame dragging in the ergosphere twists up the field li
- just as in the non-relativistic accretion disk case Back-reaction of the magnetic field accelerates the ergospheric plasma to relativistic speeds camter to the <u>hole's rotation</u>; negative energy plasma
- Accretion of negative energy plasma
- spins down the hole
- More closely -related to the Punsly -Coroniti (1990) process

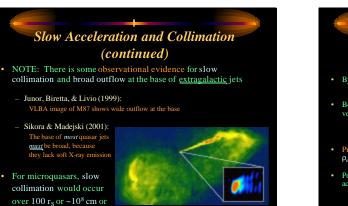

Spin Paradigm" Qualitatively Explains Many Statistical Properties of AGN (Wilson & Colbert 1995; Blandford 199?; Meier 1999; Baum et al 2002)

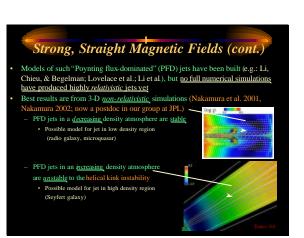

- · Difference between radio loud and quiet quasars (RL=Kerr BH; RQ=Schwarzschild BH)
- Cosmic evolution of radio sources (rapid BH spindown [~10⁸ yr] plus spin -up by mergers)
- Why powerful radio galaxies occur primarily in giant ellipticals (only ones merging and spinning back up)
- Why central cluster galaxies are primarily FR Is (no comparable hole with which to merge to extreme Kerr)
- Why most massive holes appear to be radio loud (always occur in central cluster galaxies and always harassed by mergers)

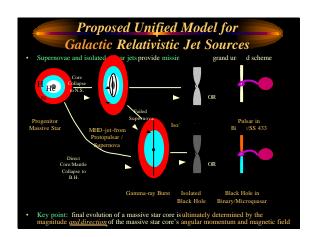
Geometrically Thick Accretion Flows Are More Efficient at Launching Jets

- Thicker disks have stronger MHD power (Meier 2001): $H \sim R \Rightarrow$ stronger poloidal magnetic field $B_p \sim (H/R) B_{\phi}$ $L_{jet} = \; B_{\phi}^{\ 2} \; H^2 \; R^2 \; \Omega^2 \; / \; 4c \;$
- Thermal pressure can assist jet production: Thicker, hotter disk lifts plasma out of deep potential well, making jets easier to launch
- One or both of these effects may be at work in recent 3-D MRI simulations by Hawley & Balbus (2002):
- These theoretical arguments are consistent with Fender (1999) jets in microquasars are suppressed in the high/soft state by a factor > 35

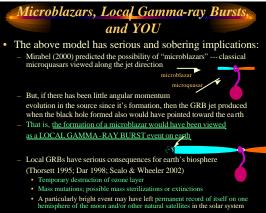







•

2 nas at 3 kpc



Highly-Relativistic Flow Most Likely Produced By Strong, Straight Magnetic Fields

- By definition, $\Gamma >> 1$ implies $E_{kinetic} >> \rho c^2$ ⇒ low "mass loading" of the jet flow
- Because $V_{jst} \sim V_{Alfven}$, relativistic $\Gamma_{jst} >>1$ flow can be produced by having a very strong rotating magnetic field such that
 $$\begin{split} \Gamma_{Alfven} &= V_{Alfven}/c \, = \, B/\!\sqrt{4 \, \pi \rho \, c^2} \, >> \, 1 \\ \Rightarrow \, low \text{ ``mass loading'' of the field lines} \end{split}$$
- Problem: any magnetic field <u>carried by the flow</u> has an effective mass density $\rho_m \sim B_1^{-2} 8 \pi^2$, whose inertia slows the acceleration
- Possible solution: high Γ flow is parallel to rather straight field lines (B_{\parallel}) and accelerated by low-amplitude (e.g., low-pitch torsional) Alfven waves 🖌 Jet

with $B_1 \ll B_1$

