DRAGNs Large-scale Jets in DRAGNs Radio sources powered by jets from AGN: - Radio Galaxies, - Quasars - Seyfert galaxies etc. J. P. Leahy • Relativistic (initial) flow Jodrell Bank Observatory, speeds: Lorentz factor γ ~ 3-10. University of Manchester A. Bridle et al./NRAO (Thanks to NRAO for financial support) 間 ff AAS Meeting Wedi sday 5 th June AAS Meeting Wed sdav 5 th June 2002

DRAGN in reality (Cygnus A)

Questions

- How are DRAGNs born?
- · How stable are the jets?
- How long do DRAGNs live?
- How do they die?

ff

• Is there an after-life?

AAS Meeting Wednesday 5th June 2002

Power Stability

- Hotspots in 80-90% of lobes in powerful DRAGNs → jets nearly always "on".
- Hotspot:lobe flux ratio:
 Median 0.22
 IQR 0.11 0.54
- Jets could fluctuate in power by factors of several.

ĥ

		_	_			
6	6	*	1	1	-	
			-			
		-		114	14	
>	ł	7	1		N	
1	۶				2	
		ñ			4	
	1.01				1.4	
~	N	8			۰.	
**	1	1	X	1	-	
7	N		1	Ň	N	
			ä			
		•				
From	n Atla	as of	DRA	GNs		
(Lea	hy, E	Bridle	& St	rom	1996)	
ay 5 th Ju	ne				Au	

 Re-invigorated Jets: 3C 33.1

 VLA A+B+C+D

 20 cm

 1.5"

AAS Meeting Wednesday 5 th June 2002

AAS Meeting We

Cluster elongated along radio axis.

ff

VLA B+C+D λ3.6 cm 0.74" beam

Understanding the "Rings"

Rings:

- Present in both lobes
- Surround jet features
- Spectrally youngBrighter on outer side
- Brighter in West lobe

Jets:

ff

- brighter jet is nearer, from depolarization.
- Inclination $i \approx 50^\circ$

AAS Meeting Wed

Model:

sdav 5 th June

- Jet asymmetry due to beaming: $\beta \cos i \approx 0.5$
- Observed timescales 3x different in the two lobes, from light-travel effect.
- Rings are shocks in old lobes caused by new
- outburst – Fluctuations on many timescales

Crossing the F-R Divide

- Plume best explained as a remnant of previous FR I phase.
- Luminosity of PKS1637-77: $- P_{178} \approx 10^{25} \text{ W Hz}^{-1} \text{sr}^{-1}$ (near FR divide).
- Luminosity of plume: ~10²³ W Hz⁻¹sr⁻¹
 Characteristic of fainter FR I sources.
- NB: remnant would be hard to see, if new FRII phase was much brighter.

AAS Meeting Wednesday 5 th June 2002

Conclusions

- Jets show large-amplitude variability on many timescales.
- with light-travel effects, will disguise intrinsic symmetry.
- Multiple outbursts can dramatically affect large-scale structure of DRAGNs.
- End-point of DRAGN lifecycles poorly understood.

AAS Meeting Wednesday 5 th June 2002

