

Three brightest radio sources alone account for at least 60% of the mid-IR flux from the entire galaxy

What types of radio objects are these? SNR? SNe? • Typical slope <0 • Typical slope < 0 Fade too quickly • Probably too faint AGN? Dense HII Regions? • Typical slope < 0 + Slope > 0

- Only 1 (or rarely 2) in galaxy
- - + Expected luminosity + Expected multiplicity

Expand the sample	
- VLA survey of 20 starbursts	
Better determine the physical properties	
- Use mm lines (e.g. CS, HCN)	
- Use RRLs	
Map out the spectral energy distributions	
- Mid-IR to sub-mm (Q-band?)	
ill in the evolutionary sequence	
Fill in cluster mass sequence	
look for masers?	