Initial Conditions for Star Formation

Neal J. Evans II

Why Initial Conditions?

- Many calculations of collapse
 - Depend on initial conditions
- Relevant Initial Conditions
 - Density distribution: n(r)
 - Velocity
 - turbulence
 - Magnetic field (subcritical or
 - Ionization (if subcritical, $t_{AD} \sim x_{o}$)

Focus on Density

- Larson-Penston
 - Uniform density
 - fast collapse, high accretion rate
- Shu
 - Singular isothermal sphere n(r) ~ r⁻²
 slow infall, low, constant accretion rate
- Foster and Chevalier
 - Bonner-Ebert sphere
 - initial fast collapse (LP), relaxes toward Shu

Low Mass vs. High Mass

- Low Mass star formation
 - "Isolated" (time to form < time to interact</p>
 - Low turbulence (less than thermal support)
 Nearby (100 pc)
- High Mass star formation

 - "Clustered" (time to form > time to interact)
 - Turbulence >> thermal
 - More distant (>400 pc

Even "Isolated" SF Clusters

Myers 1987

Low Mass Initial Conditions

- Molecular line maps: denser cores
 n > 10⁴ cm⁻³
- IRAS: some not seen (starless cores)
- Submm dust emission from some starless
 Pre-protostellar cores (PPCs)
- ISO: detected FIR, but not point like
 Consistent with heating by ISRF
- SCUBA: submm maps made "easy"
 - Study n(r)

SCUBA Map of PPC

850 micron map of L1544 A PPC in Taurus Shirley et al. 2000

Radial Profile, from azimuthal average

Results of Dust Modeling

- Centrally peaked density
 - Bonnor-Ebert sphere is a good model
 - Central density reaches 10⁶ cm⁻³
 - May approach singular isothermal sphere
- Dust temperature very low toward center
 - Down to about 7 K
 - Affects emission
- Some cores denser than others
 - Evolutionary sequence of PPCs?

Molecular Line Studies

- Study of PPCs with dust emission models
- Maps of species to probe specific things
- C¹⁸O, C¹⁷O, HCO⁺, H¹³CO⁺, DCO⁺, N, H⁺, CCS

The PPC is Invisible to Some

Cut in RA: Convert to N(H₂) with standard assumptions C¹⁸O does not peak C¹⁷O slight peak Optical Depth plus depletion

Results for Low Mass

- Dust traces density
 - Must account for temperature
- Bonnor-Ebert spheres fit well
- Cold, dense interior causes heavy depletion
- Cold, dense interior causes neavy depietion
- Molecular emission affected by
- Evidence of inward motions
 - Before central source forms

Not Quite Initial...

- Once central source forms, self-luminous
 - Class 0 evolving to Class I
- Similar studies of dust emission show
 - Power laws fit well: $n(r) = n_f(r) (r/r_f)^{-p}$
 - Aspherical sources have lower p
 - Most rather spherical
 - For those, ~1.8

Studies of High Mass Regions

- Survey of water masers for CS
 - Early, but not initial
 - Plume et al. (1991, 1997)
 - Dense: <log n> = 5.9
- Maps of 51 at 350 micron dust emission
 Mueller et al. 2002, Poster 71.02
- Maps of 63 in CS J = 5–4 emission
 - Shirley et al. 2002
- Maps of 24 in CS J=7–6 emission
 Knez et al. 2002

log Mar (Mal

Mueller et al. (2002)

Results from Dust Models

Power laws fit well

- < 1.8 (~ same as for low mass)</p>
- Denser (n_f 1–2 orders of magnitude higher)
- Luminosity correlates well with core mass
 - Less scatter than for GMCs as a whole
 - L/M much higher than for GMCs as a whole
- Using DUST mass (as in some high-z work)
 - L/M_{dust} ~ 1.4 x 10⁴ L_{aup}/M_{aup} ~ high-z starbursts
 - Starburst: all gas like dense cores?

Results from Molecular Studies

- Virial mass correlates with mass from dust
- Mass distribution closer to stars than GMCs
- Much more turbulent
 - than low mass cores
 - than usual relations would predict

INITIAL Conditions: Speculation

- Based on sample from maser study
 - Massive: <M> ~ 2000 M_{sun} from dust
 - Dense
 - Tending toward power law density, p ~ 1.8
 - Turbulent? (assume virial)
- But COLD (heated only by ISRF)
- No clear examples known

High vs. Low Initial Conditions							
	Condition	Low	High				
	Observed?	yes	no				
	n(r) l	Bonnor-Ebert	??				

High vs. Low Early Conditions							
	Property	Low	High				
	р	~1.8	~1.8				
	n _f (median)	2 x 10⁵	1.5 x 10 ⁷				
	Linewidth	0.37	5.8				

Summary of Results

- Low mass stars form in
 - Cold regions (T<10 K)
 - Low turbulence
 - Bonnor-Ebert spheres good models
 - Power laws after central source forms
- High Mass stars
 - Much more massive, turbulent
 - Power law envelopes, similar p to low mass
 - But much denser

Acknowledgments

- NASA, NSF, State of Texas
- Students
 - Chad Young (11.04)
 - Jeong-Eun Lee (71.17)
 - Kaisa Mueller (71.02)
 - Yancy Shirley
 - Claudia Knez

