Deep Surveys with the VLA: The CDFS and UDF

K.I. Kellermann, E.B. Fomalont (NRAO), E. Richards, J. Kelly (NRAO & UVa), Neal Miller, NRAO and Johns Hopkins R. Windhorst (Arizona) B.Partridge (Haverford) P. Shaver, P. Padovani, P. Rosati (ESO), P. Tozzi (INAF), V. Mainieri (MPE)

Deep VLA Surveys

Field	Θ _{asec}	λ_{cm}	$\sigma_{\mu Jy}$	N	Reference
				arcmin ⁻²	
HDF _{VLA}	1.5	4	1.8	0.5	Richards et al. 1998, ApJ 116, 1039
HDF _{VLA}	1.5	20	8	0.6	Richards, 2000, ApJ, 533, 611
HDF _{VLA+MERLIN}	0.2	20	3	0.6	Muxlow et al. 2005, MN, 358, 1159
SSA13 _{VLA}	4	4	1.5	0.6	Fomalont et al. 2002, AJ, 123, 2402
SSA13 _{VLA}	1.5	20	5	1.5	Fomalont et al. 2006, ApJS, in press
CDFS/UDF _{VLA}	3.5	20	8	0.8	Unpublished
CDFS/UDF _{VLA}	3.5	6	8		Unpublished

Chandra Deep Field South 942 ks exposure 361 X-ray sources 5 x 10⁻¹⁷ ergs/sec

Extended CDFS 250 ks per field

Hubble UDF 976 ks exposure B, V, I, z 10,000 galaxies I < 29

GOODS ACS B, V, i, z I < 28

VLA 20 cm

DECLINATION (J2000)

VLA Observations

6 and 20 cm θ = 3.5 arcsec $\sigma = 8-11 \mu Jy$ 266 Radio sources **198 Sources in Complete sample** $S_{20} > 40$ microJy Within CDFS

57 in CDFS X-ray list 74 additional in ECDFS

New Observations @ 6 cm σ = 6 (4) μJy

ABBENCA IOHHERHER

Optical Counterparts

- More than 90% optical counterparts
- > A few classical radio galaxies I < 20</p>
- Most radio sources have optical counterparts in the range 20 < I < 25</p>
 - Typically red: (R z) ~ 2
 - Some are very red (R-z) ~ 5
 - Galaxies with luminous starforming regions in interacting systems (groups or pairs)
 - AGN s
- > Optically quiet radio sources

VLA Observations

$S_{20} = 1.4 \text{ mJy}$ $S_6 = 0.5 \text{mJy}$ $\alpha = -0.7$

Radio/x-ray source properties 198 radio sources with S₂₀ > 40 µJy 57 sources have X-ray counterparts

Soft (0.5-2 kev) band flux 3.8 x 10⁻¹⁷ ergs/s/cm² Hard (2-10 kev) band flux 4.6 x 10⁻¹⁷ ergs/s/cm²

Remaining 141 sources

Next Steps

Examine 20 cm image over a range of surface brightness

 Analyze new 6 cm image including UDF
Obtain spectra (redshifts) for all radio sources ECDFS X-ray sources

Get deeper radio images at 6 and 20 cm

http://www.mpe.mpg.de/~mainieri/cdfs_pub/

Comments

- Both weak X-ray and weak radio emission are increasingly due to star formation rather than AGN, but AGN are important at all levels.
- Weak X-ray sources are mostly ordinary late type galaxies, while radio sources are a mixture of bright (AGN) and fainter (starforming) galaxies showing signs of mergers or interactions.
- Many microJy radio sources are identified with very red galaxies, possibly with submm excess.
- About 10% of microJy radio sources unidentified, some to very low levels in other wavebands
- There is no missing population of low surface brightness microJy radio sources
- There are significant field to field variations (cosmic variance). HDF is low, CDFS is high. Sub milliJy differential count slope is -2.4.
- About 10% of radio sources displaced from nucleus
- Natural confusion may limit the ultimate sensitivity of deep surveys