

National Radio Astronomy Observatory

May 17, 2006 – Legacy Projects Workshop



# **VLA/VLBA Large Projects**

# Jim Ulvestad Assistant Director, NRAO

#### NRAO Large Proposals (VLA/VLBA)

- Large Projects defined to be ≥ 200 hr of observing (720 ksec, or ~133 HST orbits)
  - Lower limit used to be 250-300 hr
  - Length of scientific justification is unlimited
  - "Survey" or "Large Project"
- Proposal Submission/Review
  - Deadline once per configuration cycle (16 months)
    - Next deadline is October 2, 2006
  - Anonymous referee reports from 8 "normal" VLA/VLBA referees
  - Large Proposal Review Committee (non-NRAO) meets faceto-face to evaluate proposals
  - NRAO has always followed LPRC recommendations

#### Large Proposal Evaluation

- Evaluation Criteria
  - Broad scientific interest
  - Data reduction plan
  - Data products from surveys; data-release plan
- Constraints on Evaluation Panel
  - Soft limit of 10%-20% of observing time to Large Proposals
    - VLA and VLBA observe 6000 and 4500 hr/yr, respectively
    - Chandra: 18% > 1 Msec; 18% in 0.3-1 Msec range
    - LPRC and Users Committee have not recommended "intermediate" category for NRAO
  - No more than 50% of observing time at one Local Sidereal Time in one VLA configuration

#### Past Large Proposals (see www.vla.nrao.edu/astro/)

| AS801                  | VLA COSMOS                                                             | VLA A,C      | 2004-2005 | 264 hr      | E.Schinnerer     |
|------------------------|------------------------------------------------------------------------|--------------|-----------|-------------|------------------|
| AK563                  | Virgo: A Laboratory for Studying Galaxy Evolution                      | VLA C        | 2004-2005 | 240 hr      | J. Kenney        |
| BL123                  | MOJAVE: Monitoring of Jets in Active galaxies with<br>VLBA Experiments | VLBA         | 2004-2005 | 14 x24 hr   | M. Lister        |
| AW605                  | THINGS: The HI Nearby Galaxy Survey                                    | VLA<br>B,C,D | 2003-2005 | 293 hr      | F. Walter        |
| AH810                  | Coordinated Radio and Infrared Survey for High-Mass<br>Star Formation  | VLA B        | 2005      | 40 hr pilot | M. Hoare         |
| BL111                  | MOJAVE: Monitoring of Jets in Active galaxies with<br>VLBA Experiments | VLBA         | 2002-2004 | 17 x 24 hr  | M. Lister        |
| AK509                  | Cosmic Explosions                                                      | VLA          | 2000-2003 | 30 hr/month | S. Kulkarni      |
| BC120                  | Pulsar Astrometry with the VLBA                                        | VLBA         | 2002-2004 | 300 hr      | S. Chatterjee    |
| AS687                  | A Deep Radio Survey of the SIRTF First-look Survey                     | VLA B        | 2001-2002 | 240 hr      | T. Soifer        |
| AB628,<br>AB879, AB950 | FIRST Survey                                                           | VLA B        | 1993-2002 | 3209 hr     | R. Becker        |
| AG592                  | HI Survey of Clusters in the Local Universe                            | VLA C        | 2001-2002 | 360 hr      | J. van<br>Gorkom |
| AP397                  | A 4-meter All-sky Survey                                               | VLA<br>BnA,B | 2001      | 70 hr pilot | R. Perley        |
| AT245                  | A Global, High Resolution HI Survey of the Milky Way                   | VLA D        | 2000      | 260 hr      | R. Taylor        |
| AC308                  | NRAO VLA Sky Survey                                                    | VLA          | 1993-1996 | 2939 hr     | J. Condon        |

#### **Active Large Proposals**

| AH884 | The Coordinated Radio and Infraed Survey for<br>High-Mass Star Formation (The CORNISH Survey)        | VLA B,<br>BnA | 2006-2007 | 360 hr      | M. Hoare    |
|-------|------------------------------------------------------------------------------------------------------|---------------|-----------|-------------|-------------|
| BL137 | MOJAVE II: Monitoring of Jets in Active galaxies with<br>VLBA Experiments II. Entering the GLAST Era | VLBA          | 2006-2007 | 384 hr      | M. Lister   |
| BT085 | The VLBA Imaging and Polarimetry Survey (VIPS)                                                       | VLBA          | 2006      | 195 hr      | G. Taylor   |
| BR100 | The Spiral Structure and Kinematics of the Milky Way                                                 | VLBA          | 2005-2007 | 270 hr      | M. Reid     |
| AK583 | Cosmic Explosions                                                                                    | VLA           | 2005-2006 | 20 hr/month | S. Kulkarni |
| AP452 | VLA Low-frequency Sky Survey                                                                         | VLA BnA,<br>B | 2003-2006 | 690 hr      | R. Perley   |

- Two of the presently active large proposals followed from previous proposals that were given "pilot" time
- VLA (imaging) Large Proposals have tended to be in intermediate (B or C) configurations
- Approved VLA Large Proposals in 2004-2005 took a bit more than 10% of VLA time (~1300 hours observing)

#### **Citation Rates of Large and Normal Proposals**



- FIRST and NVSS each have about 1000 citations for 3000 observing hours
- Typical VLA paper has higher citation rate per hour of observing
  - Chandra also has more citations/ksec for observations shorter than 100 ksec
- However, citation rate may not be a good measure of scientific impact of large projects

#### Extragalactic "Blank Field" Proposal Call

- VLA is the telescope of choice for deep radio integrations of various extragalactic fields
- Made a special proposal call for current VLA cycle, for 40-200 hr proposals
  - External evaluation, allocated time for 4/8 proposals

| AM857 | , A Deep & Unbiased Probe of Star Formation in the GOODS Northern Field                                                                          | VLA A   | 2006 | 77 hr | G.<br>Morrison   |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|-------|------------------|
| AO201 | The SWIRE Deep Field at 90cm: A Steep<br>Spectrum MicroJy Radio Population?                                                                      | VLA A,C | 2006 | 66 hr | F. Owen          |
| AS859 | Follow-up of the COSMOS 1.4 GHz Imaging<br>Survey: Identification of Dusty Massive<br>Starforming Systems                                        | VLA A   | 2006 | 60 hr | E.<br>Schinnerer |
| AY164 | An In-depth Investigation of the Nature of the<br>Faint 24 Micron Spitzer Sources and 1100 Micron<br>AzTEC Sources in the FLS Verification Strip | VLA A,B | 2006 | 96 hr | M. Yun           |
|       | National Radio Astronomy Observatory                                                                                                             |         |      |       | May 17, 2006     |

#### VLA Time Allocation-1



- All/Some/None: Received All/Some/None of time requested
- Some highly ranked proposals are not finished yet, others are large proposals, and others are Known Transient Proposals that were not triggered (more applicable for VLBA than for VLA)

#### **VLBA** Time Allocation



Very few VLBA proposals request fewer than 5 hours



National Radio Astronomy Observatory

May 17, 2006 – Legacy Projects Workshop



## **VLA/EVLA/VLBA** Capabilities

## **Jim Ulvestad**

## VLA Frequency Coverage and Sensitivity

| Wavelength<br>(cm) | Freq. Range<br>(GHz) | Image RMS<br>(12 hr) | Maximum<br>Resolution |
|--------------------|----------------------|----------------------|-----------------------|
| 400                | 0.073-0.0745         | 15 mJy               | 24 arcsec             |
| 90                 | 0.305-0.337          | 0.17 mJy             | 6 arcsec              |
| 18-21              | 1.24-1.70            | 6.6 μJy              | 1.4 arcsec            |
| 6                  | 4.50-5.00            | 6.4 μJy              | 0.4 arcsec            |
| 4                  | 8.08-8.75            | 5.3 μJy              | 0.24 arcsec           |
| 2                  | 14.65-15.32          | >30 µJy              | 0.14 arcsec           |
| 1.3                | 21.20-25.20          | 12 μJy               | 0.08 arcsec           |
| 0.7                | 40.50-44.50          | 30 μJy               | 0.05 arcsec           |

- Sensitivity degrades slightly due to EVLA antennas undergoing retrofit
  - 2 cm receivers will not be replaced until after 2010

# Angular Resolution and Continuum Sensitivity in B/C Configurations

| Wavelength | Beam (arcsec) |      | T <sub>b</sub> rms (mK) |       |  |
|------------|---------------|------|-------------------------|-------|--|
| (cm)       | B             | С    | B                       | С     |  |
| 400        | 80            | 260  | 30,000                  | 3,000 |  |
| 90         | 17            | 56   | 4600                    | 460   |  |
| 18-21      | 3.9           | 12.5 | 200                     | 20    |  |
| 6          | 1.2           | 3.9  | 190                     | 19    |  |
| 4          | 0.7           | 2.3  | 160                     | 16    |  |
| 1.3        | 0.3           | 0.9  | 350                     | 35    |  |
| 0.7        | 0.15          | 0.47 | 870                     | 87    |  |

 Beams scale by factors of 3, and T<sub>b</sub> by factors of 10, for A and D configurations

#### **VLA Synthesized Aperture**

Snapshot Observation

• 12-hr Synthesis



National Radio Astronomy Observatory

#### 28 Years of VLA Observations



#### EVLA Point-Source Sensitivity Improvements : $1-\sigma$ , 12-hours

Continuum Sensitivity

Spectral Line Sensitivity



## EVLA Access to Redshifted CO

- Continuous frequency coverage from 1 GHz to 50 GHz
- Detect CO at almost any redshift



Redshift Coverage for CO Transitions

#### **EVLA New Capabilities Timescale**

- The old correlator will be employed until the new correlator achieves full capability
  - User availability
    in 2010
- Full band tuning available sooner, on schedule shown here.



#### VLBA Frequency Coverage and Sensitivity

| Wavelength<br>(cm) | Freq. Range<br>(GHz) | Image RMS<br>(8 hr) |
|--------------------|----------------------|---------------------|
| 90                 | 0.312-0.342          | 2 mJy/beam          |
| 50                 | 0.596-0.626          | 2 mJy/beam          |
| 18-21              | 1.35-1.75            | 46 μJy/beam         |
| 13                 | 2.15-2.35            | 50 μJy/beam         |
| 6                  | 4.6-5.1              | 45 μJy/beam         |
| 4                  | 8.0-8.8              | 46 μJy/beam         |
| 2                  | 12.0-15.4            | 84 μJy/beam         |
| 1.3                | 21.7-24.1            | 151 μJy/beam        |
| 0.7                | 41.0-45.0            | 237 µJy/beam        |
| 0.3                | 80-96                | >1 mJy/beam         |

#### **VLBA Angular Resolution**

| Wavelength | Beam FWHM | Beam (at z=1)                             |
|------------|-----------|-------------------------------------------|
| (cm)       | (mas)     | (H <sub>0</sub> =65, q <sub>0</sub> =0.5) |
| 90         | 21        | 140 pc                                    |
| 50         | 12        | 80 pc                                     |
| 18-21      | 5         | 33 pc                                     |
| 13         | 3         | 20 pc                                     |
| 6          | 1.4       | 9 pc                                      |
| 4          | 0.8       | 5 pc                                      |
| 2          | 0.5       | 3.3 pc                                    |
| 1.3        | 0.3       | 2.0 pc                                    |
| 0.7        | 0.2       | 1.3 pc                                    |
| 0.3        | 0.1       | 0.7 pc                                    |

- Improved resolution by factor of 500 compared to VLA A configuration
  - Implies loss factor of 250,000 in brightness sensitivity

National Radio Astronomy Observatory

#### Some Details on VLBA Capabilities

- Sub-milliarcsecond resolution
- Repeated observations possible with identical aperture-plane coverage
- Accurate geometric models, and model accountability, enable astrometric accuracy of tens of microarcseconds
- Pulsar gating possible in correlator
- Brightness temperature sensitivity above 10<sup>6</sup> K
  - Nonthermal emission, masers are viable targets
  - Sensitivity may be improved by factors of up to 10 using High Sensitivity Array (add VLA, GBT, Ar, Eb)
- Most programs are scheduled dynamically

#### Common VLA/EVLA/VLBA Attributes

- Excellent aperture-plane coverage
- Well-calibrated arrays of identical antennas
- Mature operational systems
- Reliability above 95%
- Excellent astrometric capabilities based on inertial reference frame
- Full suite of exportable data-analysis software
  - AIPS now
  - CASA under development
- NRAO scientific support available as needed for Large Proposals