On the (Non)Evolution of HI "Disks" over Cosmic Time

J. XAVIER PROCHASKA

UCO/LICK OBSERVATORY

(IMPS: INTER[GALACTIC-STELLAR] MEDIUM PROGRAM OF STUDIES)

A.M. WOLFE (UC SAN DIEGO) S. HERBERT-FORT (ARIZONA)

NGC 628

THINGS: Walter et al. 2008

NGC 628

THINGS: Walter et al. 2008

Galactic Σ_{HI} Profiles

Analysis

- De-project by inclination
- Average over azimuth
- Plot
- Common characteristics
 - HI 'holes' at the center
 - Steep decline for R<R25</p>
 - Power-law (Metsel) beyond

NGC 628

THINGS: Walter et al. 2008

NGC 628

THINGS: Walter et al. 2008

NGC 628

THINGS: Walter et al. 2008

f(N_{HI}): Frequency Distribution

Observations/Analysis

- High spatial resolution, 21cm maps of individual galaxies
- Recover one N_{HI} value for each spatial resolution element
- <u>No</u> de-projection
- Extrapolate to "all galaxies"
 - Convolve with Φ(L)
 - Normalize by the co-moving volume of Φ(L)
 - Actually, normalize to the co-moving mass density of HI at z=0

Zeroth Moment of f(N_{HI}): l(X)

• Area under the f(N_{HI}) curve

- Number of galaxies intersected per pathlength travelled
- Often denoted dN/dX or dn/dz

$$\ell(X) = \int_{N_{\min}}^{\infty} f(N_{\mathrm{HI}}) \, dN_{\mathrm{HI}}$$

- z=0 result
 - ► l(X) = 0.046 +/- 0.002
 - One intersects a galaxy with $N_{\rm HI} > 2 \times 10^{20} \text{ cm}^{-2}$ every 100 Gpc
- Covering fraction
 - I view l(X) as how galaxies cover the sky, in projection

Zeroth Moment of f(N_{HI}): l(X)

- Area under the f(N_{HI}) curve
 - Number of galaxies intersected per pathlength travelled
 - Often denoted dN/dX or dn/dz

$$\ell(X) = \int_{N_{\min}}^{\infty} f(N_{\mathrm{HI}}) \, dN_{\mathrm{HI}}$$

- z=0 result
 - ► I(X) = 0.046 +/- 0.002
 - One intersects a galaxy with N_{HI} > 2x10²⁰ cm⁻² every 100 Gpc
- Covering fraction
 - I view l(X) as how galaxies cover the sky, in projection

First Moment of f(N_{HI}): ρ_{HI}

- Integrate: N_{HI} f(N_{HI}) dN_{HI}
 - Comoving HI mass density

$$\rho_{\rm HI} = \frac{m_p H_0}{c} \int\limits_{N_{\rm min}}^{\infty} N_{\rm HI} f(N_{\rm HI}) dN_{\rm HI}$$

- Actual measurement of ρ_{HI} at z=0 is from the HIMF
 - All sky survey for HI galaxies
 - Construct an HI mass function
 - Integrate
- Value at z=0

• $Q_{HI} = (0.52 + - 0.07) 10^8 M_{sun} Mpc^{-3}$

Cosmic Evolution of HI in Galaxies

- How does HI gas in galaxies evolve with time?
- Are galaxies smaller in the past, e.g. lower I(X)?
- Are galaxies more gas rich in the past, e.g. higher ρ_{HI}?

Bouwens et al. 2008

Probing HI Gas at High z

• 21cm?

- Not with today's telescopes
- Limit is z~0.2
- EVLA?
- Hα, Lyα emission
 - Difficult observations
 - Traces 'special' galactic regions
 - Tough to convert to HI mass
- Lyα absorption
 - Simple counting of atoms
 - Need a background source

Lah et al. 2007

Figure 7. The average H I galaxy spectrum created from co-adding the signal of all 121 galaxies with known optical redshifts. The top spectrum has no smoothing or binning and has a velocity step size of 32.6 km s⁻¹. The bottom spectrum has been binned to \sim 500 km s⁻¹. This is the velocity width that the combined H I signal of the galaxies is expected to span. For both spectra the 1 σ error is shown as dashed lines above and below zero.

Probing HI Gas at High z

Shapiro et al. 2008

• 21Cm?

- Not with today's telescopes
- Limit is z~0.2
- EVLA?
- Hα, Lyα emission
 - Difficult observations
 - Traces 'special' galactic regions
 - Tough to convert to HI mass
- Lyα absorption
 - Simple counting of atoms
 - Need a background source

10 20 30 40 50 Д

0

10 0 0 10 20 30 40 50 1 7

Rauch et al. 2008

- $\Sigma_{\rm HI}=1 \ M_{\rm sun}/pc^2$ is $N_{\rm HI}=10^{20} \ cm^{-2}$
 - Optical depth:

$$\tau_{\mathrm{Ly}\alpha}^0 = 7.5 \times 10^6 \frac{N_{\mathrm{HI}}}{10^{20} \,\mathrm{cm}^{-2}}$$

- Damped absorption (Wolfe et al. 1986)
- Experiment: QSO spectroscopy
 - Single shot through one galaxy
 - Repeat experiment to build a sample
 - GRBs work too (e.g. Chen et al. 2005)
- Survey DLAs: SDSS
 - ► $N_{\rm HI} >= 2 \text{ x } 10^{20} \text{ cm}^{-2}$
 - DR5 -- 1000 DLAs surveyed
 - z=2.2 to 5
 - Hand-fitted Lyα profiles

- $\Sigma_{\rm HI}=1 \ M_{\rm sun}/pc^2$ is $N_{\rm HI}=10^{20} \ cm^{-2}$
 - Optical depth: $\tau_{\text{Ly}\alpha}^0 = 7.5 \times 10^6 \frac{N_{\text{HI}}}{10^{20} \, \text{cm}^{-2}}$
 - Damped absorption (Wolfe et al. 1986)
- Experiment: QSO spectroscopy
 - Single shot through one galaxy
 - Repeat experiment to build a sample
 - ► GRBs work too (e.g. Chen et al. 2005)
- Survey DLAs: SDSS
 - ► $N_{\rm HI} >= 2 \text{ x } 10^{20} \text{ cm}^{-2}$
 - DR5 -- 1000 DLAs surveyed
 - z=2.2 to 5
 - Hand-fitted Lyα profiles

- $\Sigma_{\rm HI}=1 \ M_{\rm sun}/\rm pc^2$ is $N_{\rm HI}=10^{20} \ \rm cm^{-2}$
 - **Optical depth:**

$$\tau_{\rm Ly\alpha}^0 = 7.5 \times 10^6 \frac{N_{\rm HI}}{10^{20} \,{\rm cm}^{-2}}$$

- Damped absorption (Wolfe et al. 1986)
- **Experiment: QSO spectroscopy**
 - Single shot through one galaxy
 - Repeat experiment to build a sample MI GRBs work too (e.g. Chen et al. 2005)
- Survey DLAs: SDSS
 - $N_{\rm HI} >= 2 \text{ x } 10^{20} \text{ cm}^{-2}$
 - DR5 -- 1000 DLAs surveyed
 - z=2.2 to 5
 - Hand-fitted Lya profiles

- $\Sigma_{\rm HI}=1 \ M_{\rm sun}/pc^2$ is $N_{\rm HI}=10^{20} \ cm^{-2}$
 - Optical depth: $\tau_{\text{Ly}\alpha}^0 = 7.5 \times 10^6 \frac{N_{\text{HI}}}{10^{20} \, \text{cm}^{-2}}$
 - Damped absorption (Wolfe et al. 1986)
- Experiment: QSO spectroscopy
 - Single shot through one galaxy
 - Repeat experiment to build a sample
 - GRBs work too (e.g. Chen et al. 2005)
- Survey DLAs: SDSS
 - ► $N_{\rm HI} >= 2 \text{ x } 10^{20} \text{ cm}^{-2}$
 - DR5 -- 1000 DLAs surveyed
 - z=2.2 to 5
 - Hand-fitted Lyα profiles

$$f(N_{\rm HI})$$
 at $z\sim3$

 $f(N_{HI})$ at $z\sim3$

 $f(N_{HI})$ at $z\sim3$

- z= 2 to 4
 - KS test gives $P_{KS} > 10\%$
 - Over these few Gyr, HI gas is distributed in a self-similar fashion
 - Especially at low N_{HI} values
 - + I(X) and $\rho_{\rm HI}$ must evolve together
- z=2 vs. z=0
 - Nearly identical distributions!
 - HI gas in galaxies at z>2 has the same projected N_{HI} as z=0 disks
 - Is HI at high z in similar disks with similar surface density profiles?
- Inference
 - HI has been distributed in a selfsimilar fashion over <u>all</u> cosmic time

- z= 2 to 4
 - KS test gives $P_{KS} > 10\%$
 - Over these few Gyr, HI gas is distributed in a self-similar fashion
 - Especially at low N_{HI} values
 - + I(X) and $\rho_{\rm HI}$ must evolve together
- z=2 vs. z=0
 - Nearly identical distributions!
 - HI gas in galaxies at z>2 has the same projected N_{HI} as z=0 disks
 - Is HI at high z in similar disks with similar surface density profiles?
- Inference
 - HI has been distributed in a selfsimilar fashion over <u>all</u> cosmic time

- z= 2 to 4
 - KS test gives $P_{KS} > 10\%$
 - Over these few Gyr, HI gas is distributed in a self-similar fashion
 - Especially at low N_{HI} values
 - + I(X) and $\rho_{\rm HI}$ must evolve together
- z=2 vs. z=0
 - Nearly identical distributions!
 - HI gas in galaxies at z>2 has the same projected N_{HI} as z=0 disks
 - Is HI at high z in similar disks with similar surface density profiles?
- Inference
 - HI has been distributed in a selfsimilar fashion over <u>all</u> cosmic time

- z= 2 to 4
 - KS test gives $P_{KS} > 10\%$
 - Over these few Gyr, HI gas is distributed in a self-similar fashion
 - Especially at low N_{HI} values
 - + I(X) and $\rho_{\rm HI}$ must evolve together
- z=2 vs. z=0
 - Nearly identical distributions!
 - HI gas in galaxies at z>2 has the same projected N_{HI} as z=0 disks
 - Is HI at high z in similar disks with similar surface density profiles?
- Inference
 - HI has been distributed in a selfsimilar fashion over <u>all</u> cosmic time

Moments of f(N_{HI}): z=2 vs. 0

Comparison

- I(X) and ρ_{HI} match the z=0 values
- This suggests that the values have not evolved for 10 Gyr!
- But, we know stars form ...
 - <u>HI gas in galaxies is a necessary</u> but insufficient condition for SF
 - HI gas acts as a "bias level"
 - Accretion of new gas drives the SFR
- Don't galaxies evolve?
 - Yes, but in LCDM galactic-sized halos are 'frozen in' by z=2
 - Galaxies as a population maintain the same HI gas distribution
 - In shape and absolute value

Moments of f(N_{HI}): z=2 vs. 0

Comparison

- I(X) and ρ_{HI} match the z=0 values
- This suggests that the values have not evolved for 10 Gyr!
- But, we know stars form ...
 - <u>HI gas in galaxies is a necessary</u> but insufficient condition for SF
 - HI gas acts as a "bias level"
 - Accretion of new gas drives the SFR
- Don't galaxies evolve?
 - Yes, but in LCDM galactic-sized halos are 'frozen in' by z=2
 - Galaxies as a population maintain the same HI gas distribution
 - In shape and absolute value

Moments of f(N_{HI}): z=4 to 2

- Evolution
 - I(X) and ρ_{HI} drop by 50%
 - Both the mass density and the covering fraction
 - Over an interval of ~2 Gyr time
 - What is driving this?
- Failed hypotheses
 - In-situ star formation
 - Rates are too low
 - f(N_{HI}) would evolve markedly
 - Conversion to H2
 - Same problems as in-situ SF
 - Secular processes
 - Could reduce I(X), but why ρ_{HI}?

Moments of f(N_{HI}): z=4 to 2

"Violent" removal

- Remove gas entirely from ~1/2 of the galaxies
 - I(X) and $\rho_{\rm HI}$ will decline in tandem
- Options (usual suspects)
 - AGN, Galactic winds, mergers
- End state
 - Half of the galaxies have no HI
 - SF halts
 - Progenitors of red+dead galaxies
 - Infer: z~3 is the formation epoch of early-type galaxies
 - Stars are ~10 Gyr old
 - Such populations are observed
 - ➡ (DRGs, EROs)

Open Questions (for the EVLA)

- What is the HIMF at z=0.2 or even z=1?
 - We predict no evolution from z=0
- Have we observed enough faint galaxies at z=0?
- What happens below columns of N_{HI} = 10²⁰ cm⁻²?
- Does the beam difference between 21cm and Lyα matter?
 - Higher spatial resolution 21cm
- Why do the kinematics evolve significantly?
 - Are winds playing a role?

