Cosmic AGN & Star Formation through Deep & Wide Surveys at IR, mm/smm, and Radio Wavelengths

Min S. Yun University of Massachusetts

OUTLINE

- 1. Motivations
- 2. Finding high-z dusty starbursts/AGNs
- 3. Measuring redshifts and mass assembly history
- 4. Role of the EVLA

Star Formation History to z=1 by Spitzer

M_{BH} and Host Mass Relation

- Apparent correlation between $M_{\rm BH}$ and σ_{\star}
- Growth of SMBH and mass build-up of the host linked

Clues to the BH growth in the galaxy assembly history?

Gebhardt et al. 2001; Ferrarese & Merritt 2001, Tremaine et al. 2002

Finding High-z Starbursts

Dust-obscured star formation via IR/mm/submm wavelength surveys

(model SMG spectrum by Efstathiou, Rowan-Robinson and Siebenmorgen, 2000)

mm/submm wavelength observations provide a (roughly) redshift independent tracer of star formation in dusty galaxies with z>1.

Herschel Space Observatory

Instruments

- PACS (70/110/160 μm)
- SPIRE (250/350/500 μm)
- HIFI (150-625 μm)

• Key Cosmology Programs:

- Herschel Multi-tiered Extragalactic Survey (HerMES)
- PACS Evolutionary Probe (PEP)
- Herschel 1000 Degree Survey
- . GOODS-Herschel
- Broad area and depth coverage through multiple nested/tiered projects
- Launch planned in 2009

HerMES/PEP/GOODS-H

Dust-obscured star formation via IR/mm/submm wavelength surveys

(model SMG spectrum by Efstathiou, Rowan-Robinson and Siebenmorgen, 2000)

mm/submm wavelength observations provide a (roughly) redshift independent tracer of star formation in dusty galaxies with z>1.

mm-galaxy Surveys circa 2007

	AzTEC	AzTEC	SCUBA	MAMBO	BOLOCAM
	JCMT	ASTE	JCMT	IRAM 30-m	CSO
	2005	2007	1997-2005	1998-2007	2005-2007
Area (arcmin²)	4000	3969	1200	1500	1200
1σ _{1.1mm} r.m.s. (mJy)	0.9-1.5	0.5-1.0	0.5-1.2	0.7-1.5	1.4-1.9
Ν	389	595	~300	~60	~23
N (S _{1.1mm} > 5 mJy)	90	34	~10	~20	21
Total Area (arcmin ²)	7969		3900		
Total N	984		~383		

What do we know about these sources?

- radio selected sample peaks at z~2.3 (Chapman et al. 2005)
- incredibly massive

 $M_{halo} > 10^{12} M_{p}$ (Blain et al. 2004)

 $\cdot M_{stars} > 10^{11} M_{p}$ (Chapman et al. 2008, Lonsdale et al. 2008)

• SFR > several 100s M
$$_{p}$$
 /yr

• Luminous: $L_{bol} \sim 10^{12}$ - $10^{14} L_{p}$

Large Millimeter Telescope (LMT)

- 50m mm-wave Antenna
 - Operation: 4mm-0.85mm
 - Active Primary Surface
 - 75 microns rms.
 - 1/3 of ALMA collecting area
- Located in Mexico
 - Excellent mm-wave site
 - High Altitude (15,000 ft)
 - +19 deg. Latitude
- State-of-the-art instrumentation:
 array cameras

Mapping Speeds of Next Generation mm/smm Instruments

- AzTEC:
 - 1000 arcmin²/mJy²/hr
 - ToITEC: 10 deg²/mJy²/hr
 - **Resolution: 5" FWHM**
- Confusion Limit: < 0.1 mJy</p>
- Positional accuracy:
 < 1"

Figure courtesy D. Elbaz & M. Dickinsor MassAmherst

Near-term LMT Continuum Surveys

- Key Project: 5 sq. degs sample wide variety of LSS environments
- > 100, 000 galaxies in 100 hr survey (>0.4mJy; SFR >40 M ₽ /yr;

or resolving 100% of the extragalactic mm-background or 60% of FIR background)

Measuring Redshifts and Mass Assembly History

LSS in the COSMOS Survey

Scoville et al. (2007)

- Mapped LSS to z~1 using 10⁵ photo-z
- Spec-z are difficult to obtain – 10⁴ spectra from VLT, Kecks, Subaru, Gemini, Magellans, etc. combined over 3-4 yrs, mostly at z<2

How do we push this to z=4-5 and beyond?

Young Massive SBs at high-z are Dark

Greyscale: HST *i*-band, Contours: Subaru *r*-band

Many are exceedingly faint with i > 25 and r > 27

SMA

Younger et al. (2007)

LMT Ultra Wideband Redshift Search Receiver

- A new generation of spectrometer is needed for this problem.
- Science goal is to measure galaxy redshifts where z is unknown.
- 74-110.5 GHz covered simultaneously with a receiver/spectrometer having 30 MHz resolution (R~3000).
- Wide bandwidth with very low noise is practical with InP MMIC amps operated at 20 K.
- Full receiver has 4 pixels two dual polarization feeds with orthomode transitions.
- 1 KHz ferrite beam switch on input for very flat baselines.
- Each receiver has 2 IF outputs 1.5-20 GHz x 4 receivers
 146 GHz total IF bandwidth!

Frequency Range

• Strongest spectral lines from CO and C (492, 810 GHz). More than one line needed; search the maximum possible bandwidth.

• Lines are expected to be quite weak, search in best 3 mm window.

NGC 253 (Nucleus)

RSR is 40 times Faster on LMT

- Model RSR spectrum of a z=2.5 SMG with LMT in 1 hr
- Template analysis for z, ΔV , chemistry, multiplicity, etc.

RSR Sensitivity on LMT

- In 1 hr, we can detect and obtain unambiguous reds hifts of:
 - ♦ each known SMGs (S_{850m}>
 5mJy) with S/N>10
 - each ULIRGs at all redshifts with S/N>5
 - ♦ MW-like galaxies to z=0.2
- 1mm Rx with RSR backen d would be 3-4 times more s ensitive if CO line is fully ther malized.

Large RSR Surveys

- Short term: 10⁴ redshifts
 - Coarse mapping of LSS at z > 1
 - SMG LF and H₂ MF and their evolution
 - cosmic SF history and stellar mass build-up
 - Dynamical and chemical evolution of galaxies
 - BH-galaxy co-evolution?
- Long term: 10⁶ redshifts
 - Detailed 3D tomography of LSS to z~10? probe connection between LSS and galaxy bias
 - Acoustic peak at z>2
 - Requires a new instrument

Role of the EVLA

Nature of High-z SBs

- arcsec resolution required for correct counterpart ID
 - · Follow-up spectroscopy
 - SED analysis and photo-z
 - Spatially resolved structure and gas kinematics

(also J. Younger talk)

Younger et al. 2007

Panchromatic Photometric Redshifts

- Photometry at radio wavelengths critically important
- A large statistical sample (~10⁶ redshifts) is needed for the study of LSS, clustering (halo mass), etc

Stanway et al. (2008)

- Excellent angular and spectral resolution
 - Details of gas distribution and kinematics
 - Link between gas and activities
 - Large scale structure and clustering at small scales
- Not well suited for blind redshift surveys

(talks by E. Daddi, D. Reichers)

Summary Remarks

- 10⁵⁻⁶ dusty SBs will be known from the Herschel, AzTEC, SCUBA-2, and other surveys by the time EVLA comes on line, entering the phase of deeper understanding, rather than just discovery.
- EVLA will be critical for understanding detailed properties (SEDs, distribution and kinematics of gas and other activities) and statistical studies (photo-z's, clustering).
- Deep HI survey for mapping the cold gas content evolution is indeed a "no-brainer."