The Baryon Content of Dark Matter Halos:

Hsiao-Wen Chen

(University of Chicago)
Mapping the Dark Universe
Mapping the Dark Universe

Absorption spectrum of a distant quasar
Mapping the Dark Universe

Absorption spectrum of a distant quasar
Mapping the Dark Universe
probing halo gas on 10-100 kpc scales

Absorption spectrum of a distant quasar
Properties of MgII absorbers

- prominent doublet features at $\lambda=2796$, 2803 Å; observable in the optical window at $z = 0.3-2.5$
Properties of MgII absorbers

- prominent doublet features at $\lambda = 2796, 2803$ Å; observable in the optical window at $z = 0.3-2.5$

- photo-ionized gas of $T \sim 10,000$ K; probing warm gas in the ISM and galactic halos (Bergeron & Stasinska '86)
Properties of MgII absorbers

- prominent doublet features at $\lambda = 2796, 2803$ Å; observable in the optical window at $z = 0.3-2.5$

- photo-ionized gas of $T \sim 10,000$ K; probing warm gas in the ISM and galactic halos (Bergeron & Stasinska '86)

- multi-component features with the absorption equivalent width $W \propto$ number of components

(Petitjean & Bergeron '90; Churchill & Vogt '01; Prochter +06)
Properties of MgII absorbers

- prominent doublet features at $\lambda = 2796, 2803$ Å; observable in the optical window at $z = 0.3-2.5$

- photo-ionized gas of $T \sim 10,000$ K; probing warm gas in the ISM and galactic halos (Bergeron & Stasinska ’86)

- multi-component features with the absorption equivalent width $W \propto$ number of components (Petitjean & Bergeron ’90; Churchill & Vogt ’01; Prochter +06)

- association with luminous galaxies at $\rho \leq 100 \ h^{-1} \ kpc$ (Lanzetta & Bowen ’90; Steidel +94; Kacprzak +08)
Probing halo gas with MgII absorbers

High Velocity Clouds in the Milky Way Halo

Tobias Westmeier, CSIRO Australia Telescope National Facility
Probing halo gas with MgII absorbers

High Velocity Clouds in the Milky Way Halo

unknown distances

Tobias Westmeier, CSIRO Australia Telescope National Facility

Probing halo gas with MgII absorbers

Rao et al. (2006)

High Velocity Clouds in the Milky Way Halo

unknown distances

Tobias Westmeier, CSIRO Australia Telescope National Facility
Probing halo gas with MgII absorbers

\[\Delta v = +184 \text{ km s}^{-1} \]

Sembach+04

High velocity MgII cloud along PG1116+215

Sensitive to low column density clouds
Empirical Constraints from a Random Sample of Foreground Galaxies

Chen & Tinker (2008)
Empirical Constraints from a Random Sample of Foreground Galaxies

Chen & Tinker (2008)

$z = 0.892$

$\rho = 16 \, h^{-1} \text{kpc}$

$W = 1.55 \, \text{Å}$
Empirical Constraints from a Random Sample of Foreground Galaxies

Chen & Tinker (2008)
Empirical Constraints from a Random Sample of Foreground Galaxies

Chen & Tinker (2008)

3C336

\[z = 0.892 \]
\[\rho = 16 \ h^{-1} \text{ kpc} \]

PKS1354+19

\[z = 0.4592 \]
\[\rho = 31 \ h^{-1} \text{ kpc} \]

PKS0454-22

\[z = 0.4847 \]
\[\rho = 76 \ h^{-1} \text{ kpc} \]
Extent of Gaseous Halos and Covering Fraction

Chen & Tinker (2008)

23 galaxies at $z=0.3-0.9$
Extent of Gaseous Halos and Covering Fraction

Chen & Tinker (2008)

23 galaxies at $z=0.3-0.9$

$\log w(2796) \, (\text{Å})$

$log \rho \, (h^{-1} \text{kpc}) + 0.14 \times (M_B-M_B^*)$

Chen & Tinker (2008)
The extent of Mg$^+$ ions scales with galaxy luminosity, $R_{\text{gas}} = 91x(L_B/L_{B^*})^{0.35}$.

The gas covering fraction is $\kappa_g \sim 100\%$ around galaxies of > 0.2 L^*, and $< 50\%$ around fainter galaxies.

Chen & Tinker (2008)
The Origin of Halo Clouds: fuel for star formation or wind remnant?

Chen & Tinker (2008)
The Origin of Halo Clouds: \textit{fuel for star formation or wind remnant?}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Chen & Tinker (2008)}
\end{figure}

\begin{equation}
\log W(2796) \, (\text{Å})
\end{equation}

\begin{equation}
\log \rho \, (h^{-1} \text{ kpc}) + 0.14 \times (M_B-M_B^*)
\end{equation}

\textit{photoionization}
The Origin of Halo Clouds: fuel for star formation or wind remnant?

Chen & Tinker (2008)

Chen+ '01

comparable extent between C$^3+$ and Mg$^+$
The Origin of Halo Clouds: fuel for star formation or wind remnant?

Two-phase medium: pressure confined cold clouds in hot halos

Mo & Miralda-Escudé '96; Maller & Bullock '04

Chen & Tinker (2008)

Comparable extent between C^3+ and Mg^++

CIV

MgII profiles

CIV profiles
The Origin of Halo Clouds: fuel for star formation or wind remnant?

two-phase medium: pressure confined cold clouds in hot halos

Chen & Tinker (2008)

comparable extent between C\(^3\)+ and Mg\(^+\)

Mo & Miralda-Escudé ’96; Maller & Bullock ’04

CIV profiles

Mg\(\text{II}\) profiles

Chen+ ’01

Chen & Tinker (2008)
Constraining halo gas content over a broad mass range

luminous red galaxies vs. MgII Absorbers at $z = 0.4-0.7$

Visualization of SDSS DR5

Courtesy of Mark SubbaRao
Constraining halo gas content over a broad mass range

luminous red galaxies vs. MgII Absorbers at $z = 0.4-0.7$

Visualization of SDSS DR5

Courtesy of Mark SubbaRao
Halo Occupation of Dark Baryons

An empirical mapping between DM halos and baryons through a statistical approach.

Tinker & Chen (2008)
Halo Occupation of Dark Baryons

An empirical mapping between DM halos and baryons through a statistical approach.

DATA

frequency distribution function + 2-pt clustering amplitude

Prochter et al. (2006)
Steidel & Sargent (1992)

Tinker & Chen (2008)
Halo Occupation of Dark Baryons

An empirical mapping between DM halos and baryons through a statistical approach.

DATA

frequency distribution function + 2-pt clustering amplitude

Bouché et al. (2006)

Tinker & Chen (2008)
Halo Occupation of Dark Baryons
An empirical mapping between DM halos and baryons through a statistical approach.

DATA
frequency distribution function
+ 2-pt clustering amplitude

MODEL
known dark matter halos
+ *gaseous halo profile*

Tinker & Chen (2008)
Halo Occupation of Dark Baryons

An empirical mapping between DM halos and baryons through a statistical approach.

- density profile: \((r^2+a^2)^{-1}\)
- gaseous extent: \(R_g = \frac{1}{3} R_{200}\)
- mass dependence: \(M_h^{1/3}\)

\[
W(s|M) = \frac{W_0 \sigma_{cl} f_g}{M_{cl}} \times \int_0^\infty \rho(\sqrt{s^2 + l^2})dl
\]

DATA

frequency distribution function
+ 2-pt clustering amplitude

MODEL

known dark matter halos
+ *gaseous halo profile*

Tinker & Chen (2008)
Halo Occupation of Dark Baryons

An empirical mapping between DM halos and baryons through a statistical approach.

DATA
frequency distribution function + 2-pt clustering amplitude

MODEL
known dark matter halos + gaseous halo profile

RESULTS

$P(W|M_h)$: incidence and extent of cold gas vs. DM halo mass

Tinker & Chen (2008)

- density profile: $(r^2 + a^2)^{-1}$
- gaseous extent: $R_g = 1/3 \ R_{200}$
- mass dependence: $M_h^{1/3}$
Halo Occupation of Dark Baryons

An empirical mapping between DM halos and baryons through a statistical approach.

DATA
- frequency distribution function + 2-pt clustering amplitude

MODEL
- known dark matter halos + *gaseous halo profile*

RESULTS
- $P(W|M_h)$: incidence and extent of cold gas vs. DM halo mass

- density profile: $(r^2+a^2)^{-1}$
- gaseous extent: $R_g = 1/3 \, R_{200}$
- mass dependence: $M_h^{1/3}$

the data demand a transition in the halo gas content

Tinker & Chen (2008)
Comparisons with Theoretical Expectations

The growth of hot halos vs. halo mass

Keres et al. 2005

Tinker & Chen 08

Keres et al. 2005
Summary

- A self-consistent model is established to characterize the origin of absorption systems uncovered in QSO spectra.

- A larger galaxy-absorber pair sample allows a detailed investigation of κ_g vs. L_B (a proxy of M_h) and κ_g vs. ρ.
Summary

- A self-consistent model is established to characterize the origin of absorption systems uncovered in QSO spectra.
- A larger galaxy-absorber pair sample allows a detailed investigation of κ_g vs. L_B (a proxy of M_h) and κ_g vs. ρ.

individual probes

A MagE survey of MgII in SDSS galaxies

J.-R. Gauthier, J. Helsby, J. Tinker, S. Shectman, I. Thompson
Summary

A self-consistent model is established to characterize the origin of absorption systems uncovered in QSO spectra.

A larger galaxy-absorber pair sample allows a detailed investigation of κ_g vs. L_B (a proxy of M_h) and κ_g vs. ρ.

individual probes

A MagE survey of MgII in SDSS galaxies

J.-R. Gauthier, J. Helsby, J. Tinker, S. Shectman, I. Thompson

2D map of individual halos

Thilker+ '04

~ 10 kpc