The Baryon Content of Dark Matter Halos:

Hsiao-Wen Chen

(University of Chicago)

probing halo gas on 10-100 kpc scales

Solution prominent doublet features at λ =2796, 2803 Å; observable in the optical window at z = 0.3-2.5

- Prominent doublet features at λ=2796, 2803 Å; observable in the optical window at z = 0.3-2.5
- photo-ionized gas of T ~ 10,000 K; probing warm gas in the ISM and galactic halos (Bergeron & Stasinska '86)

- Prominent doublet features at λ=2796, 2803 Å; observable in the optical window at z = 0.3-2.5
- photo-ionized gas of T ~ 10,000 K; probing warm gas in the ISM and galactic halos (Bergeron & Stasinska '86)

(Petitjean & Bergeron '90; Churchill & Vogt '01; Prochter +06)

- prominent doublet features at λ=2796, 2803 Å; observable in the optical window at z = 0.3-2.5
- photo-ionized gas of T ~ 10,000 K; probing warm gas in the ISM and galactic halos (Bergeron & Stasinska '86)

(Petitjean & Bergeron '90; Churchill & Vogt '01; Prochter +06)

association with luminous galaxies at $\leq 100 h^{-1}$ kpc

(Lanzetta & Bowen '90; Steidel +94; Kacprzak +08)

CSIRO

Based on the Leiden/Argentine/Bonn Survey (Kalberla et al. 2005, A&A 440, 775) and the Milky Way model of P. Kalberla (Kalberla et al. 2007, A&A, in press).

Tobias Westmeier, CSIRO Australia Telescope National Facility Based on the Leiden/Argentine/Bonn Survey (Kalberla et al. 2005, A&A 440, 775) and the Milky Way model of P. Kalberla (Kalberla et al. 2007, A&A, in press).

Extent of Gaseous Halos and Covering Fraction

Chen & Tinker (2008)

Extent of Gaseous Halos and Covering Fraction

Extent of Gaseous Halos and Covering Fraction

fuel for star formation or wind remnant?

fuel for star formation or wind remnant?

fuel for star formation or wind remnant?

fuel for star formation or wind remnant?

two-phase medium: pressure confined cold clouds in hot halos

fuel for star formation or wind remnant?

two-phase medium: pressure confined cold clouds in hot halos

Constraining halo gas content over a broad mass range

luminous red galaxies vs. MgII Absorbers at z = 0.4-0.7

Visualization of SDSS DR5

Courtesy of Mark SubbaRao

Constraining halo gas content over a broad mass range

luminous red galaxies vs. MgII Absorbers at z = 0.4-0.7

Visualization of SDSS DR5

Courtesy of Mark SubbaRao

An empirical mapping between DM halos and baryons through a statistical approach.

An empirical mapping between DM halos and baryons through a statistical approach.

DATA

frequency distribution function + 2-pt clustering amplitude

An empirical mapping between DM halos and baryons through a statistical approach.

<u>DATA</u>

frequency distribution function + 2-pt clustering amplitude

An empirical mapping between DM halos and baryons through a statistical approach.

<u>DATA</u>

frequency distribution function + 2-pt clustering amplitude

MODEL

known dark matter halos + gaseous halo profile

An empirical mapping between DM halos and baryons through a statistical approach.

- density profile : (r²+a²)⁻¹
- gaseous extent : Rg=1/3 R200
- mass dependence : M_h^{1/3}

DATA

frequency distribution function + 2-pt clustering amplitude

$W(s|M) = \frac{W_0 \,\sigma_{cl} \,f_g}{M_{cl}} \times \int_0^{\sqrt{R_g^2 - s^2}} \rho(\sqrt{s^2 + l^2}) dl$

MODEL

known dark matter halos + gaseous halo profile

An empirical mapping between DM halos and baryons through a statistical approach.

- density profile : (r²+a²)⁻¹
- gaseous extent : R_g=1/3 R₂₀₀
- mass dependence : M_h^{1/3}

DATA

frequency distribution function + 2-pt clustering amplitude

MODEL

known dark matter halos + gaseous halo profile

RESULTS

P(W/M_h): incidence and extent of cold gas vs. DM halo mass

An empirical mapping between DM halos and baryons through a statistical approach.

• gaseous extent : R_g=1/3 R₂₀₀

• mass dependence : M_h^{1/3}

DATA

frequency distribution function + 2-pt clustering amplitude

MODEL

known dark matter halos + gaseous halo profile

RESULTS

P(W/M_h): incidence and extent of cold gas vs. DM halo mass

Comparisons with Theoretical Expectations

The growth of hot halos vs. halo mass

<u>Summary</u>

- A self-consistent model is established to characterize the origin of absorption systems uncovered in QSO spectra.
- A larger galaxy-absorber pair sample allows a detailed investigation of g vs. L_B (a proxy of M_h) and g vs. ρ .

Summary

- A self-consistent model is established to characterize the origin of absorption systems uncovered in QSO spectra.
- A larger galaxy-absorber pair sample allows a detailed investigation of g vs. L_B (a proxy of M_h) and g vs. ρ .

individual probes

<u>Summary</u>

- A self-consistent model is established to characterize the origin of absorption systems uncovered in QSO spectra.
- A larger galaxy-absorber pair sample allows a detailed investigation of g vs. L_B (a proxy of M_h) and g vs. ρ .

