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• Neutron Stars are laboratories for extreme physics.

⇒ We need precision measurements to exploit them.

In this talk:

• Why bother with astrometry of Neutron Stars?

• Case Study: High veocity pulsars.

• Case Study: Proper motion of a transient source.

• Attaining high precision.

• Results and future directions.
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• Basic observable: Position ~θ.

→ Celestial coordinate grid defined by the ICRF.

• Positions over time: Proper motion ~µ.

→ Longer time baseline helps measurement.

→ Reference frame and calibrator stability?

• Positions from different points in Earth’s orbit: Parallax π.

→ Frequent sampling over the orbit helps measurement.
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→ Optical / IR.

(e.g., HST π to RX J0720.4−3125, Kaplan et al.)

→ X-ray.

(e.g., CXO µ of NS in Puppis A, Winkler & Petre.)

→ Radio pulse timing of recycled pulsars.

(e.g., J0437−4715; van Stratten, Bailes, et al.)

→ Radio interferometry.

The majority of NS parallaxes are from VLBI.
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(Brisken et al. 2000 ++)

{µ, π} ⇒
Model-independent

distances and velocities.



Why do it?

(What’s in it for me?)
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• Astrophysics: NS atmospheres, cooling curves and nuclear

Equations of State from spectra and absolute distances.

• Astrophysics: Constraints on supernova core collapse.

• Origins: SNR associations and NS birth sites; true ages.

• Evolution: NS distribution and population velocities.

• Environment: Calibrate models of Galactic ne density.

• Environment: Model the local ISM with ISS, bow shocks.

• Verify solar system–extragalactic reference frame ties.

(e.g., Bartel et al. 1996; also Fomalont & Reid 2007)
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How large are the kicks that NS receive at birth?

B1508+55 is a very “ordinary” pulsar:

• Rotation period is 0.74 seconds.

• Inferred magnetic field is 2 × 10
12 Gauss.

• Characteristic age is 2.3 million years.

• Located well outside Galactic plane (b = 52.3◦).

Observe 8 times over 2 years with the VLBA...



Astrometric Results for B1508+55

Neutron Star Astrometry SC 2009-07-21
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µd = −62.62 ± 0.09 mas yr−1

π = 0.42 ± 0.04 mas

(with Vlemmings, Brisken, Lazio, Cordes,

Goss, Thorsett, Fomalont, Lyne, Kramer)
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µa = −73.61 ± 0.04 mas yr−1

µd = −62.62 ± 0.09 mas yr−1

π = 0.42 ± 0.04 mas

Distance = 2.37
+0.23
−0.20 kpc

V⊥ = 1083
+103
−90 km s−1

The highest measured model-independent velocity yet!

(Chatterjee et al. 2005)



The Birth Site of B1508+55
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Orbit of B1508+55 overlaid on Axel Mellinger’s image of the Galaxy.

• Current Galactic latitude = 52.3◦.

• Trace back orbit in Galaxy: born in Galactic plane.

• Birth in or near Cygnus OB associations.
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• B1508+55: implied birth velocity ≈ 1100 km s−1.

• Binary disruption is unlikely to impart such a high velocity;

a kick is required.

• Core collapse: first 3D hydrodynamic simulations (Fryer 2004)

do not produce such large kicks.

• Work ongoing: better simulations, SASI, acoustic modes.

(e.g., recent esults from various simulation groups:

Janka et al., Fryer et al., Blondin et al., Burrows et al.)

⇒ High velocities impose severe constraints on core collapse and

kick velocity scenarios.
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• If kicks are mediated by asymmetric neutrino emission,

magnetic fields play a major role.

• Experiment: Turn up the magnetic field.

⇒ Are magnetar velocities ≫ ordinary psr velocities?

• Need X-ray or adaptive optics IR obs over many years.

→ Interesting preliminary results.

(e.g., two-epoch Chandra obs; Kaplan et al. 2009),

But we need longer time baselines.
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(from Camilo et al. 2006)



Magnetar XTE J1810–197
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• Camilo et al. (2006): Transient pulsed radio emission!

• Rapidly fading...

• But bright enough for VLBA obs at 5, 8.4 GHz over 106 days.
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For D = 3.5 ± 0.5 kpc,
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[180 − 270 km s−1]

(Helfand, Chatterjee, et al. 2007)
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µα = −6.60 ± 0.06 mas yr−1

µδ = −11.7 ± 1.0 mas yr−1

⇒
For D = 3.5 ± 0.5 kpc,

V⊥ ∼ 220 km s−1

[180 − 270 km s−1]

(Helfand, Chatterjee, et al. 2007)

⇒ For this one magnetar V⊥, no exotic kicks are required.



How do we do it?
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Pulsar Astrometry with the VLBA
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• Astrometric observations are phase-referenced: ICRF.

• Boost S/N ratio for pulsars with the pulsar gate.

• Primary problem at 1.4 GHz: residual ionospheric effects.

Center at RA 09 22 13.98740  DEC 06 38 22.4440

CONT: J0922+06  IPOL  1509.984 MHZ  0919-CL2.ICLN.2
PLot file version 1  created 16-NOV-1998 14:34:01

Cont peak flux =  2.0358E-03 JY/BEAM 
Levs = 5.000E-04 * (-2, -1.40, -1, 1, 1.400, 2,
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CONT: J0922+06  IPOL  1509.984 MHZ  0919-CL3.ICLN.1
PLot file version 1  created 16-NOV-1998 14:33:50
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• In-beam calibration enables sub-mas accuracy.



Pulsar Astrometry with the VLBA

Neutron Star Astrometry SC 2009-07-21

• Astrometric observations are phase-referenced: ICRF.

• Boost S/N ratio for pulsars with the pulsar gate.

• Primary problem at 1.4 GHz: residual ionospheric effects.

Center at RA 09 22 13.98740  DEC 06 38 22.4440

CONT: J0922+06  IPOL  1509.984 MHZ  0919B-CL2.ICLN.1
PLot file version 1  created 25-NOV-1998 14:38:24

Cont peak flux =  1.1597E-03 JY/BEAM 
Levs = 5.000E-04 * (-2, -1.40, -1, 1, 1.400, 2,
2.800, 4, 5.600, 8)
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Center at RA 09 22 13.98740  DEC 06 38 22.4440

CONT: J0922+06  IPOL  1509.984 MHZ  0919B-CL3.ICLN.1
PLot file version 1  created 25-NOV-1998 14:38:38

Cont peak flux =  2.9278E-03 JY/BEAM 
Levs = 5.000E-04 * (-2, -1.40, -1, 1, 1.400, 2,
2.800, 4, 5.600, 8)
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• In-beam calibration enables sub-mas accuracy.
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• Image the VLA 1.4 GHz primary beam (25′);

Identify compact sources.

CONT: B2045-16  IPOL  1464.119 MHZ  B2045-16.ICL008.1

Cont peak flux =  2.1737E-02 JY/BEAM 
 Levs = 5.000E-04 * (-4, -2, -1, 1, 2, 4, 8, 16, 32 ) 
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CONT: B2045-16  IPOL  1464.119 MHZ  B2045-16.ICL011.1

Cont peak flux =  1.8890E-02 JY/BEAM 
 Levs = 5.000E-04 * (-4, -2, -1, 1, 2, 4, 8, 16, 32) 
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CONT: B2045-16  IPOL  1464.119 MHZ  B2045-16.ICL001.1

Cont peak flux =  4.7936E-03 JY/BEAM 
Levs = 4.794E-04 * (-4, -2, -1, 1, 2, 4, 8, 9.500)
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63 target fields = 1060 sources detected (∼16 / field).
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• Image the VLA 1.4 GHz primary beam (25′);

Identify compact sources.

• Verify compactness at higher frequencies with VLA.

CONT: B2045-16  IPOL  8460.100 MHZ  B2045-16.011.ICL001.7

Cont peak flux =  1.0029E-02 JY/BEAM 
 Levs = 3.000E-04 * (-4, -2, -1, 1, 2, 4, 8, 16, 32, 64, 128, 256) 
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CONT: B2045-16  IPOL  8460.100 MHZ  B2045-16.008.ICL001.6

Cont peak flux =  8.3376E-02 JY/BEAM 
 Levs = 3.000E-04 * (-4, -2, -1, 1, 2, 4, 8, 16, 32, 64, 128, 256 ) 
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269 apparently compact sources imaged (∼4 / field).



A systematic approach to In-beam Calibration
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• Image the VLA 1.4 GHz primary beam (25′);

Identify compact sources.

• Verify compactness at higher frequencies with VLA.

• Image with the VLBA.

CONT: B2045-16  IPOL  1549.974 MHZ  B2045-16.ICL001.1

Cont peak flux =  1.9113E-02 JY/BEAM 
 Levs = 2.000E-03 * (-4, -2, -1, 1, 2, 4, 8, 16,  32, 64, 128, 256) 
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CONT: B2045-16  IPOL  1549.974 MHZ  B2045-16.1.ICL001.4

Cont peak flux =  2.0750E-02 JY/BEAM 
 Levs = 3.000E-04 * (-4, -2, -1, 1, 2, 4, 8, 16,  32, 64, 128, 256) 
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CONT: B2045-16  IPOL  1549.974 MHZ  B2045-16.2.ICL001.1

Cont peak flux =  3.6290E-02 JY/BEAM 
 Levs = 3.000E-03 * (-4, -2, -1, 1, 2, 4, 8, 16, 32, 64, 128, 256) 
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55 out 63 targets had 1 or more in-beam calibrator.
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• Image the VLA 1.4 GHz primary beam (25′);

Identify compact sources.

• Verify compactness at higher frequencies with VLA.

• Image with the VLBA.

• Observe over 2 years:

→ 8 epochs: {πmax, πmin}.

→ 4 frequency bands, dual polarization, 256 Mb/s.

⇒ High quality astrometry.
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A systematic approach to Systematic Errors
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• Bootstrap: infer uncertainties from the data itself.

• 8 epochs ×4 frequencies = 32 astrometric positions.

→ Choose values with replacement.

⇒ 32
32 combinations possible (but some are degenerate).

→ Explore ∼ 10, 000 fits...
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Normal case: Bootstrap results for B0818−03



A systematic approach to Systematic Errors
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Worst case: Bootstrap results for J1713+0747



Southern hemisphere
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• Long Baseline Array

(Parkes, ATCA, Mopra, Tidbinbilla; +Hobart? +Ceduna?)

⇒ Shorter baselines, poorer UV coverage, tougher calibration.
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Southern hemisphere

Neutron Star Astrometry SC 2009-07-21

• Long Baseline Array

(Parkes, ATCA, Mopra, Tidbinbilla; +Hobart? +Ceduna?)

⇒ Shorter baselines, poorer UV coverage, tougher calibration.

→ Note ASKAP under construction in Western Australia.
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Southern hemisphere

Neutron Star Astrometry SC 2009-07-21

• Long Baseline Array

(Parkes, ATCA, Mopra, Tidbinbilla; +Hobart? +Ceduna?)

⇒ Shorter baselines, poorer UV coverage, tougher calibration.

• Fantastic parallax measurements by Deller et al. (2008, 2009).
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Where do we stand?

And what next?
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• Individual measurements can be extremely valuable.

→ e.g., Astrometry on binary pulsars ⇒ GR.

→ e.g., Case studies outlined in this talk.
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• Individual measurements can be extremely valuable.

→ e.g., Astrometry on binary pulsars ⇒ GR.

→ e.g., Case studies outlined in this talk.

• A large ensemble of measurements enables deeper insights.

→ e.g., Velocities ⇒ supernova core collapse.

→ e.g., Electron density models.

Large samples test models, enable refinements (Chatterjee et al. 2009)
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• Larger samples require higher sensitivities, better techniques.

→ VLBA bandwidth expansion.

→ High sensitivity arrays.

... but larger telescopes

⇒ smaller FoV;

⇒ harder calibration;

⇒ trickier phase referencing.
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• GPS Ionospheric calibration: capabilities improving.

• Focal plane arrays:

eliminate need to slew for phase referencing?

Parkes testbed FPA; CSIRO July 2008
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• Precision astrometry enables unique science.

→ The origins, evolution, astrophysics, environments of NS.

→ e.g., Constraints on supernova core collapse, NS kicks.
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• Precision astrometry enables unique science.

→ The origins, evolution, astrophysics, environments of NS.

• The importance of a consistent, systematic approach.

→ Control of systematic errors essential.

→ Larger field of view ⇒ more inbeam sources.

→ More sensitivity ⇒ higher νobs as well.
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• Precision astrometry enables unique science.

→ The origins, evolution, astrophysics, environments of NS.

• The importance of a consistent, systematic approach.

• Future instruments, technology, techniques:

→ Ionospheric calibration: GPS.

→ Focal plane arrays: vastly larger FOVs.

→ SKA: mas resolution required for the µJy sky

⇒ High precision radio astrometry.
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Pulsar Astrometry: http://www.astro.cornell.edu/˜shami/psrvlb/
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