VLBI Calibrator Surveys —
the foundation of VLBA
astrometry

Leonid Petrov
ADNET SYSTEMS Inc./NASA GSFC, USA

Yury Y. Kovalev
Astro Space Center, Russia

Ed Fomalont
NRAO, USA

1 nrad ≈ 0.2 mas ≈ 14 μsec
The pyramid of VLBA astrometry

IV. Science: distances, kinematics, planet search, cosmology, etc.

III. Applications: differential astrometry; phase referencing.

II. Absolute astrometry: catalogue of calibrators.

I. Instrument monitoring: geodesy, EOP.

Differential astrometry: determines differences in positions.

Absolute astrometry: determines source coordinates, subject of 3 arbitrary constants, and instrument orientation.

Accuracy of differential astrometry is determined by:

- availability of the absolute position catalogue;
- proximity to the calibrator;
- accuracy of calibrator positions.

1 nrad ≈ 0.2 mas ≈ 14 µsec
Problem: to improve a catalogue of source positions.

Two possible strategies of a solution:

1. **Extensive way**: to observe a small subset of sources more often;
 Rationales:
 - the more observations, the more precise coordinates we get;
 - we can get time series analysis and get better characteristics of source positions

 Implementation: observing a list of 14–114 geodetic sources for 20 years, 10–100 times a year.

2. **Expansive way**: to observe more sources.
 Rationales:
 - many applications do not need a record-breaking accuracy, but need more sources;
 - big samples produce meaningful statistics, especially if a sample is complete.

 Implementation: observing a list of \sim5000 sources, many of them only once, in **VLBI astrometric surveys**.

1 nrad \approx 0.2 mas \approx 14 μsec
Major VLBI survey programs

<table>
<thead>
<tr>
<th>Program</th>
<th>Epochs</th>
<th># Exp</th>
<th># sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDP, JPL, CRF</td>
<td>1979–1994</td>
<td>4500</td>
<td>965</td>
</tr>
<tr>
<td>RDV</td>
<td>1994–present</td>
<td>112</td>
<td>871</td>
</tr>
<tr>
<td>VCS, NPCS</td>
<td>1994–2007</td>
<td>27</td>
<td>3575</td>
</tr>
<tr>
<td>LCS</td>
<td>2008–present</td>
<td>3</td>
<td>317</td>
</tr>
<tr>
<td>GaPS</td>
<td>2006–present</td>
<td>3</td>
<td>327</td>
</tr>
</tbody>
</table>

Dense astrometric VLBI catalogue is needed for

- phase-referencing for differential astrometry (parallaxes, proper motion, positions of pulsars);
- phase-referencing for VLBI imaging of weak objects;
- identification of γ-ray objects;
- connection of positions at other wavelengths, f.e. GAIA;
- as targets for geodesy observations.

$1 \text{ nrad} \approx 0.2 \text{ mas} \approx 14 \mu\text{sec}$
Technology of VLBI surveys: source selection

Source selection

- Selection of a (wide) pool of candidates;
- Computing the probability of detection of each source;
- Maximization of the target function.

The most difficult part is prediction of the correlated flux density.

We need to guess, whether a given source is

- extragalactic
- compact

Remember: an interferometer is a filter of spatial frequencies

We need to predict $F_{\text{comp}}/F_{\text{tot}}$ where F_{comp} is the correlated flux density in the range of spatial frequencies, the interferometer can see (5–500 Mλ).

How to do it?
Consider two source populations:

- **extended sources** \(F_{\text{comp}}/F_{\text{tot}} < 0.01 \)
- **highly compact sources** \(F_{\text{comp}}/F_{\text{tot}} \approx 0.1–0.9 \)

These populations *mostly* have a distinctive spectrum index \(\alpha \) \((F \propto \nu^{+\alpha}) \)

![Graph showing probability density vs spectral index with two peaks near \(\alpha = -1 \) and \(\alpha = 0 \).]

The distribution over spectral index has two peaks:

- near \(\alpha = -1 \) **steep spectrum**
- near \(\alpha = 0 \) **flat spectrum**
Typical source spectra from **CATS** (http://cats.sao.ru)

flat

steep

uncertain

1 nrad ≈ 0.2 mas ≈ 14 μsec
The probability density distribution of F_{comp}/F_{tot} at $|b| = R_\oplus$, $F = 8$ GHz among the two source populations:

steep spectrum population

![Graph of steep spectrum population]

flat spectrum population

![Graph of flat spectrum population]

Problems:

- Spectrum is not always certain (errors, confusion, sources variability)
- Spectral information is incomplete for sources with $F_{8GHz} < 200\,\text{mJy}$ and rare for sources with $F_{8GHz} < 100\,\text{mJy}$.

Alternative approach:

- select sources with known high frequency (20–100 GHz) flux densities.
Source selection strategy

Algorithm for predicting correlated flux density:
1. gather the spectrum (f.e. using super-catalogue CATS);
2. compute the spectral index and extrapolated flux density;
3. classify a source: steep or flat;
4. compute the cumulative probability density of F_{corr};
5. compute the cumulative probability density of the SNR;
6. compute the probability of detection.

Survey optimization:
1. formulate the target function, for example:
 - to maximize the total number of detected sources
 - to fill areas with low source density;
 - to reach completeness on correlated flux density
2. To find such a subset of candidate sources that maximize the target function.

Output: a source list and associated integration times.
Scheduling survey observations

- find a sequence of scans that minimizes slewing time and satisfy antenna constraints
- Insert every 1–1.5 hours calibrator sources. The purpose of calibrators:
 - to be able to solve for atmosphere path delay in zenith
 - to tie the positions with the core of frequently observed sources (absolutization).

NB: The source list always **must** have an overlap.

Analysis of observations

- Fringe fitting;
- Group delay ambiguity resolution;
- Outlier elimination;
- Global LSQ solution using **all** available observations, including the new one, for estimating sources, positions, station positions, EOP, and more than 1 million nuisance parameters.

NB: VLBI source catalogues are made **incrementally**.

\[1 \text{ nrad} \approx 0.2 \text{ mas} \approx 14 \mu\text{sec} \]
Results: 2009b_astro (http://astrogeo.org/rfc)

Calibrator source sky density

Density scale – number of sources in a disk with radius 3°

4337 objects

1 nrad \approx 0.2 mas \approx 14 μsec
Reweighting:

\[\sigma(\alpha)_{new} = \sqrt{(r\sigma(\alpha))^2 + F_\alpha(\delta)^2} \]

\[\sigma(\delta)_{new} = \sqrt{(r\sigma(\delta))^2 + F_\delta(\delta)^2} \]

Reweighted error is < 5 nrad for 83% objects, < 25 nrad for 90% objects.

Error floor is around 1 nrad.
Factors that affect errors

- whether observations at long baseline have been scheduled;
- whether observations at long baseline yield detections;
- whether a source has been observed and/or detected at one or two bands;
- whether a source is observed predominantly at low elevations;
- how many detections have been gathered:
 - 1 — useless;
 - 2–8 — unreliable positions due to group delay ambiguities;
 - 9–50 — moderate. Error $\sim 1/\sqrt{n}$;
 - 51–500 — good. Error law deviates from $\sim 1/\sqrt{n}$;
 - >500 — error floor is reached.

1 nrad ≈ 0.2 mas ≈ 14 µsec
Major surveys

- **RDV.** 1994–present. 114(112) experiments. Instrument: VLBA. S/X. Main goals: monitoring of VLBA network, monitoring of 300–400 sources. In addition, 50–90 sources per year are added on an ad hoc basis. Images are available for 85% sources.

- **VCS.** 1994–2007. 24(24) experiments. Instrument: VLBA. S/X. Main goals: astrometric catalogue at 1–10 nrad accuracy level of 3000–4000 sources. All three strategies were used: first phase “take them all”, second phase “fill holes”, third phase: “reach completeness” on a 3/4 of the celestial sphere. Images are available for all the sources.

- **NPCS.** 2006, 3(0) experiments. Instrument: VLBA. S/X. Goal: study the steep spectrum source population. All sources, 502 objects, at 0.2 srad region with $F_{1.4GHz} > 200$ mJy were observed. Images will be available for all the sources. 219 out of 502 objects were detected.

1 nrad ≈ 0.2 mas ≈ 14 μsec
• **KQ.** 2002–present. 15(15) experiments. Instrument: VLBA. K-band (22 GHz). Images are available for the majority of sources.

• **GaPS.** 2006, 3(0) experiments. Instrument: VLBA. K-band (22 GHz). Goal: to increase the astrometric catalogue density at the Galactic plane. 327 out of 490 sources were detected. Images of the majority of detected sources will be available.
Ongoing projects (observing time has been approved)

- **GAIA astrometric link** 2008–? 70–200 objects. Goal: to get absolute coordinates of radio sources associated with optically bright quasars.

- **EVN-GaPS** November 2009, 2 sessions, 613 objects. Instrument: EVN, K-band. Goal: increase the density of astrometric catalogue at $|b| < 6^\circ$.

The plot shows the source density per steradian in various galactic longitude zones. **The lower red line** shows the current density, in April 2009, **the middle orange line** shows the predicted density under a conservative assumption of the detection rate of 60%, and **the upper green line** shows the predicted density assuming 100% detection rate.

1 nrad ≈ 0.2 mas ≈ 14 µsec
• **LCS** 2008–2010. Instrument: LBA, 8(3) sessions, 900(317) objects. X-band. Goal: to increase the astrometric catalogue density at the declination zone $[-90^\circ, -40^\circ]$ in order to match the northern hemisphere.

On-going analysis improvement development

• Migration from AIPS to the custom fringing software;

• Using numerical weather models for modeling troposphere path delay and atmospheric extinction;

• Using ionosphere models for processing single-band data.

$1 \text{ nrad} \approx 0.2 \text{ mas} \approx 14 \mu\text{sec}$
VLBI Calibrator list completeness for $\delta > -30^\circ$ at 8.6 GHz

<table>
<thead>
<tr>
<th>F_{corr} (Jy)</th>
<th>N_{obs}</th>
<th>N_{pred}</th>
<th>Cmpl</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.050</td>
<td>3011</td>
<td>18700</td>
<td>16%</td>
</tr>
<tr>
<td>0.075</td>
<td>2937</td>
<td>9800</td>
<td>30%</td>
</tr>
<tr>
<td>0.100</td>
<td>2708</td>
<td>6100</td>
<td>44%</td>
</tr>
<tr>
<td>0.150</td>
<td>2154</td>
<td>3200</td>
<td>67%</td>
</tr>
<tr>
<td>0.200</td>
<td>1639</td>
<td>2000</td>
<td>$>86%$</td>
</tr>
<tr>
<td>0.250</td>
<td>1278</td>
<td>1350</td>
<td>$>96%$</td>
</tr>
</tbody>
</table>

$1 \text{ nrad} \approx 0.2 \text{ mas} \approx 14 \mu\text{sec}$
Hunt for more calibrators

How much time is needed?

The number of target sources and the baseline sensitivity for a 24^h absolute astrometry experiment.

<table>
<thead>
<tr>
<th>Int. time</th>
<th>N_{src}</th>
<th>256 Mbps SNR=10</th>
<th>4096 Mbps SNR=10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S/X K</td>
<td>S/X K</td>
</tr>
<tr>
<td>2^m</td>
<td>220</td>
<td>66 mJy 50 mJy</td>
<td>16 mJy 13 mJy</td>
</tr>
<tr>
<td>1^m</td>
<td>330</td>
<td>90 mJy 70 mJy</td>
<td>22 mJy 18 mJy</td>
</tr>
<tr>
<td>30^s</td>
<td>470</td>
<td>130 mJy 100 mJy</td>
<td>32 mJy 26 mJy</td>
</tr>
</tbody>
</table>

$1 \text{ nrad} \approx 0.2 \text{ mas} \approx 14 \text{ } \mu\text{sec}$
How many candidate sources remained?

The number of known flat-spectrum sources ($\alpha > -0.5$)

<table>
<thead>
<tr>
<th>Flux 8.6 GHz</th>
<th>$S_{max} > 1.4$ GHz</th>
<th>$S_{max} > 3$ GHz</th>
<th>$S_{max} > 8$ GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 mJy</td>
<td>4 070</td>
<td>3 900 (1 400)</td>
<td>2 980 (300)</td>
</tr>
<tr>
<td>100 mJy</td>
<td>9 170</td>
<td>8 500 (4 500)</td>
<td>5 910 (2 200)</td>
</tr>
<tr>
<td>50 mJy</td>
<td>18 400</td>
<td>16 300 (11 250)</td>
<td>9 530 (5 500)</td>
</tr>
<tr>
<td>30 mJy</td>
<td>29 100</td>
<td>22 500 (17 260)</td>
<td>10 980 (7 100)</td>
</tr>
</tbody>
</table>

Blue: the total number
Green: the number of sources not yet observed

For comparison: the prorated number of sources in NVSS, except $|b| < 6^\circ$.

<table>
<thead>
<tr>
<th>Flux 1.4 GHz</th>
<th>$S_{max} > 1.4$ GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 mJy</td>
<td>24 900</td>
</tr>
<tr>
<td>100 mJy</td>
<td>61 900</td>
</tr>
<tr>
<td>50 mJy</td>
<td>136 730</td>
</tr>
<tr>
<td>30 mJy</td>
<td>228 490</td>
</tr>
</tbody>
</table>

1 nrad ≈ 0.2 mas ≈ 14 μsec
Calibrator search efficiency

I. If to observe all sources. VLBA Northern Polar Cap survey:

All sources from NVSS \(S_{1.4\, GHz} > 200 \text{ mJy}, \delta > +75^\circ \) were observed with VLBA, 496 target objects.

<table>
<thead>
<tr>
<th>Baselines</th>
<th>(S_{corr} > 50 \text{ mJy})</th>
<th>(S_{corr} > 100 \text{ mJy})</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1000 km</td>
<td>57 11.5%</td>
<td>43 8.7%</td>
</tr>
<tr>
<td>> 6000 km</td>
<td>38 7.7%</td>
<td>29 5.8%</td>
</tr>
</tbody>
</table>

II. If to observe flat-spectrum sources. Search efficiency (\(S_{corr} > 50 \text{ mJy} \))

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>With reliable spectrum</td>
<td>80%</td>
</tr>
<tr>
<td>With unreliable spectrum</td>
<td>50–80%</td>
</tr>
<tr>
<td>No spectrum (S_{1.4, GHz})</td>
<td>11%</td>
</tr>
</tbody>
</table>

Rough estimate of efficiency:

- next 1000 sources 80%
- next 5000 sources 70%
- next 10000 sources 60%

\(1 \text{ nrad} \approx 0.2 \text{ mas} \approx 14 \mu \text{sec} \)
Probability to find a calibrator for $\delta > -40^\circ$

- $S_{\text{corr}} > 50 \text{ mJy at } L > 1000 \text{ km}$
- $S_{\text{corr}} > 50 \text{ mJy at } L > 6000 \text{ km}$

All sky: $\delta > -30^\circ$

Gal. plane: $|b| < 6^\circ, \delta > -40^\circ$

| | All sky: $\delta > -30^\circ$ | Gal. plane: $|b| < 6^\circ, \delta > -40^\circ$ |
|-------|-------------------------------|-------------------------------------|
| Today | | Mid 2010 |
| 1° | 23.0% | 30.0% |
| | 28.7% | 47.6% |
| 2° | 64.7% | 76.9% |
| | 76.0% | 90.3% |
| 3° | 90.2% | 97.1% |
| | 96.8% | 99.0% |
| 4° | 98.1% | 99.9% |
| | 99.9% | 100.0% |

1 nrad $\approx 0.2 \text{ mas} \approx 14 \mu\text{sec}$
How many new calibrators would improve the probability?

All sky

<table>
<thead>
<tr>
<th></th>
<th>1°</th>
<th>2°</th>
<th>3°</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>3740</td>
<td>4420</td>
<td>—</td>
</tr>
<tr>
<td>67%</td>
<td>8500</td>
<td>9400</td>
<td>—</td>
</tr>
<tr>
<td>80%</td>
<td>13600</td>
<td>15000</td>
<td>42</td>
</tr>
<tr>
<td>90%</td>
<td>21000</td>
<td>22000</td>
<td>70</td>
</tr>
<tr>
<td>95%</td>
<td>35000</td>
<td>36000</td>
<td>120</td>
</tr>
</tbody>
</table>

Galactic plane ($|b| < 6^\circ, \delta > -40^\circ$)

<table>
<thead>
<tr>
<th></th>
<th>1°</th>
<th>2°</th>
<th>3°</th>
</tr>
</thead>
<tbody>
<tr>
<td>67%</td>
<td>500</td>
<td>1.5</td>
<td>—</td>
</tr>
<tr>
<td>80%</td>
<td>1000</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>90%</td>
<td>1700</td>
<td>6</td>
<td>—</td>
</tr>
<tr>
<td>95%</td>
<td>2200</td>
<td>8</td>
<td>100</td>
</tr>
</tbody>
</table>

Ecliptic plane ($|\beta| < 7^\circ$)

<table>
<thead>
<tr>
<th></th>
<th>1°</th>
<th>2°</th>
<th>3°</th>
</tr>
</thead>
<tbody>
<tr>
<td>67%</td>
<td>1200</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>80%</td>
<td>2000</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td>90%</td>
<td>3200</td>
<td>11</td>
<td>340</td>
</tr>
<tr>
<td>95%</td>
<td>4300</td>
<td>15</td>
<td>640</td>
</tr>
</tbody>
</table>

Estimates

Estimates of the number of 24h observing sessions at 4096 Mbps.

- $S_{corr} > 50$ mJy at $L > 1000$ km
- $S_{corr} > 50$ mJy at $L > 6000$ km

1 nrad ≈ 0.2 mas ≈ 14 µsec
Strategies for getting more calibrators

I Full sky survey

Pro:
- Gives a complete sample for statistics studies
- Suitable for all needs

Contra:
- High cost

II Survey in a zone of special interest (e.g. Galactic plane)

Pro:
- Reduces cost

Contra:
- Zone of interest may be conflicting
- Zone of interest may be too wide

III Observing candidate sources near potential targets

Pro:
- Sources are observed only where they are needed for phase referencing

Contra:
- How to guess today what will be an interesting target tomorrow?
- Requires accumulation of large lists
- Requires coordination among different groups

$1 \text{nrad} \approx 0.2 \text{mas} \approx 14 \mu\text{sec}$
Summary

- Today VLBI surveys provide positions of 4337 sources with accuracies 1–5 nrad for 83% objects and 1–25 nrad for 90% objects;

- The catalogue is approaching to completeness at a level of 200 mJy for $\delta \in [-30^\circ, +90^\circ]$.

- Images in FITS format, in total 26,486 brightness distributions of 4191 compact sources, are available.

- Further growth of the VLBI Calibrator List can go in three directions. Estimates of necessary resources are available.

Up to date the source position catalogue, search engine, images are available at http://astrogeo.org/rfc

Tables and figures from this presentation are available at http://astrogeo.org/calib

1 nrad ≈ 0.2 mas ≈ 14 μsec