Linking the ICRF and the future Gaia optical frame

G. Bourda, <u>P. Charlot</u>, A. Collioud Laboratoire d'Astrophysique de Bordeaux **R. Porcas** Max Planck Institut für Radioastronomie **S. Garrington** Jodrell Bank Observatory

The Gaia astrometric mission

- Gaia will observe 1 billion stars and 500 000 QSOs
- Astrometric accuracy

V magnitude	6 - 13	14	15	16	17	18	19	20	mag
Parallax	8	13	21	34	55	90	155	275	μας
Proper motion	5	7	11	18	30	50	80	145	µas/an
Position @2015	6	10	16	25	40	70	115	205	μας

- Launch: 2012
- Preliminary catalog: ~ 2015
- Final catalog: 2018-2020

AB

Gaia organization

- Satellite and instruments built by ESA and industry
- Data analysis conducted by the DPAC (Data Processing and Analysis Consortium)

VLBA Astrometry Workshop, Socorro, 21-23 July 2009

P. Charlot

By 2015-2020, two extragalactic celestial reference frames will be available

ICRF position accuracy: 1998: ICRF1: $\sigma(\alpha \cos \delta, \delta) \ge 250$ μas 2009: ICRF2: $\sigma(\alpha \cos \delta, \delta) \ge 40$ μas 2015: ICRF3? $\sigma(\alpha \cos \delta, \delta)$???

Gaia position accuracy: 16 μas $\leq \sigma \leq 70$ μas @ 15 $\leq V \leq 18$

Linking the two frames is important

- to ensure continuity of the reference frame
- to register optical and radio positions with the highest accuracy

VLBA Astrometry Workshop, Socorro, 21-23 July 2009

P. Charlot

Current status of the ICRF-Gaia link

(Bourda et al. 2008)

Link sources must have:

- accurate Gaia positions \rightarrow magnitude V \leq 18
- accurate VLBI positions → good astrometric quality (no structure)

Only 10% of the current ICRF sources are suitable for the ICRF-Gaia link

VLBA Astrometry Workshop, Socorro, 21-23 July 2009

P. Charlot

Astrometric source quality

(Bourda et al. 2008)

- Astrometric quality is worse for the <u>V<18 sources</u> than for the <u>18<V<20</u> <u>sources</u>
- Result confirmed by comparison of ICRF position accuracies for the <u>V<18</u> and <u>18<V<20</u> sources

The potentially best Gaia sources for the alignment with the ICRF are not the best ICRF sources !!!

>2 n

2

- Must find new candidates
- → Specific VLBI (EVN and VLBA) observing program designed for this purpose

Number 20

0

0.5

1

Arc length error (mas)

1.5

VLBA Astrometry Workshop, Socorro, 21-23 July 2009

- 447 sources selected from the NVSS (excluding ICRF and VCS sources) with the following criteria:
 - Optical magnitude $V \le 18$
 - Total flux density (NVSS) $\ge 20 \text{ mJy}$
 - $\delta \ge -10^{\circ}$
- Observing Strategy
 - 1. VLBI detection
 - 2. Imaging
 - 3. Accurate astrometry (for the most compact sources)

Step 1: VLBI detection

- Two 48-hour EVN experiments (S/X geodetic style @ 1Gbps)
 - 224 sources observed in June 2007 (project EC025A)
 - 223 sources observed in October 2007 (project EC025B)
- 4 or 5-station network
 - Effelsberg (100m), Medicina (32m), Noto (32m), Onsala (25m)
 - + Robledo (70m) for EC025B
- S and X detection rates
 - EC025A: 96%
 - EC025B: 82%

Overall detection rate: ~ 89 % (398 sources)

VLBA Astrometry Workshop, Socorro, 21-23 July 2009

Spectral index distribution

14

Step 2: imaging

- 105 sources observed with global VLBI (VLBA + EVN) in March 2008 (selected from EC025A)
- 48-hour dual-frequency S/X @ 512 Mbps
- Schedule optimized for imaging
- Results
 - All 105 sources successfully imaged at both X + S bands
 - Dynamic range: ~ 1%

AB

Future prospects

- Image the remaining 293 targets in our sample
- Carry out global astrometry on the most compact sources and get their position to better than <100 µas
- Search for more candidates in the ICRF-2/VCS lists
- Attack the southern hemisphere
- Issues of core shifts
- Task now officially recognized as part of the Gaia DPAC (Data Processing and Analysis Consortium)
- Ultimately the Gaia link sources should form the basis of ICRF-3 to be constructed by ~2015