
RIDING HURRICANES and
STOPPING HEARTS WITH

REALTIME LINUX
(RTLinux)

Victor Yodaiken
New Mexico Institute of Mining and

Technology
Socorro

New Mexico
USA

 Victor Yodaiken 1999©

NASA's N43RF

What is realtime?

Software that interacts with the "real"
world outside the computer
Machinery
Instruments
Anything that needs responses in
bounded time.

q

q

q

q

Realtime is often used as a
marketing word but it does

mean something
Soft realtime: Tasks need to meet
deadline "most of the time". Example:
video display.
Hard realtime: Tasks that do not meet
deadlines fail. Example: rocket control

q

q

Hard Realtime

Predictability is key. We need to know
what is the imprecision in scheduling.

Worst case performance is more
important than average case.

In the CS academic literature we say
"realtime does not mean fast", but that's
only partly true. Speed determines
possible range of applications.

q

q

q

Realtime is ubiquitous

Control of
scientific
instruments
Robotics
Communications
(e.g. SS7 and
Frame Relay)
Multimedia
Machinery (e.g.
automobiles)

q

q

q

q

q

Evolution of RTOSs

The first realtime OSs were custom,
small, simple, and didn't do much.
But now users want realtime and TCP/IP,
Windowing, development, scripting

q

q

Custom systems Vxworks RTLinux

So we want realtime and
non-realtime at the same time

The problem is, as usual, that we want
two contradictory things

Fast average case performance on a OS
with everything
Fast worst case performance on a simple
OS.

q

q

q

Real Time Linux

Shares the CPU
between the
Linux kernel and
the Real-Time
Kernel
Allows
programmers to
split RT and
POSIX-style
components of
applications.

q

q

What is it?

A patch to Linux that adds a co-kernel.

The co-kernel runs real-time tasks.

Realtime tasks share the CPU (or CPUs)
with Linux and Linux processes.

q

q

q

REAL TIME
KERNEL

LINUX
KERNEL

Real Time
Tasks

Linux Processes

What contradiction?

RTLinux offers realtime tasks in a
primitive, predictable, fast, simple
environment and ...
Connections to Linux processes that
have the standard Linux environment
available to them.

q

q

Some minor surgery
on the kernel.

How does it work?

"Fix" Linux so it can't
disable interrupts.
A small RT kernel
shares kernel space
and gets irqs first.
The main change to
Linux is an interrupt
control emulator.

q

q

q

"Virtual machines"

Technique used in the 1960s in MVS
The MERT OS from Bell Labs [Bell Labs
Technical Journal 1978]

q

q

Software structure

Some of the RT Kernel is a patch.
Most is in loadable kernel modules
One of those modules provides a device
called a rt_fifo that can be accessed by
Linux user processes.

q

q

q

fd = open("/dev/rtf1",2);
read(fd,&buffer,100);
/* data from realtime task is in buffer*/

Why can't you have an
integrated RT/Non-RT kernel?

You can --- but you have to pay the price
To make Linux truly preemptive, you
have to throw out 90% of the drivers and
rewrite much of the core code. You do
not have Linux when you are done.
Otherwise, worst case delay is longest
path between two preemption points and
that is not easy to determine or to reduce
and every code change has a global
effect.

q

q

q

Typical application

Couple of RT
tasks in a
loadable kernel
module
Scheduler LKM
C & Fortran
number crunch
TCL/TK or
equivalent

q

q

q

q

Realtime
Task

A/D
Device

Linux process
to crunch numbers

RT Scheduler

TCL/TK
DISPLAY
AND
CONTROL

Realtime Fifo
Loadable kernel module

Performance

RT-Linux is now on Intel machines only,
but has been rewritten to facilitate
porting. Runs on SMP x86s.
Under 30us interrupt latency on a
486/33mhz
17us worst case delay for a RT periodic
task on a P166 running netscape.
4us worst case interupt latency on a
233Mhz PII (reported).

q

q

q

q

SMP

SMP RTLinux
runs on 2.1x
Linux kernels.
Stable on 2
processor
machines.
Tasks can be
assigned to
processors.

q

q

q

What is it used for?

Data acquistion: everything from NASA
mapping to recording data in physiology
experiments.
Robotics: Mobile robots at
Electromechanical labs in Tokyo.
Machine tool control: NIST has its own
RTLinux release.
Minicams, realtime communications, ...

q

q

q

q

De-mining robots

Use Real-Time Linux to collect data and
control actuators
Use Linux for connectivity and back-end
processing.

q

q

Real-Time is not compatible
with standard software design

practice

There are hard limits.
Average case behavior is not
determinative.
Dynamic resource allocation is
dangerous.
Batching operations is dangerous.
Hiding complexity is very dangerous!

q

q

q

q

q

MARS LANDER and the wrong
lessons.

The Mars "pathfinder" mobile robot
stopped working and needed to be
patched from earth!
The problem was "priority inversion" :

Low priority process A starts reading IPC
High priority B trys IPC, blocks on
semaphore.
Medium priority C runs so A can't
B times out!

q

q

q

q

q

q

How did they fix it?

Switched on "priority inheritance"
algorithm so that A "inherited" B's
priority.
There is a huge CS literature on priority
inheritance [Liu and Layland, Sha et al]
Problem:
The problem is not solved by this
algorithm -- just made less likely.
The real problem is using non-rt
mechanism in an rt system.

q

q

q

q

q

Principles of RTLinux design

The RT kernel should be small, fast,
extensible via LKMs.
If you need sophisticated services, use
the Linux side (no dynamic resources on
the RT side).
Use the UNIX model of linking existing
code to make new applications.
Application driven kernel design

q

q

q

q

CUTE
IDEAS

What's next?

More SMP and better response time.
Realtime clusters and clusters using
realtime.
Embedded systems.
Incorporation in the main kernel
distribution.
POSIX RT (sort of)
PowerPCs and maybe Alphas, ARMs ..
RealTime Perl

q

q

q

q

q

q

q

