RIDING HURRICANES and

STOPPING HEARTS WITH

REALTIME LINUX
(RTLinux)

Victor Yodaiken
New Mexico Institute of Mining and
Technology
Socorro
New Mexico
USA

NASA's N43RF

What is realtime?

4 Software that interacts with the "real"
world outside the computer

1 Machinery
d Instruments

1 Anything that needs responses in
bounded time.

Realtime is often used as a
marketing word but it does

mean something

d Soft realtime: Tasks need to meet
deadline "most of the time". Example:
video display.

 Hard realtime: Tasks that do not meet
deadlines fail. Example: rocket control

Hard Realtime

d Predictability is key. We need to know
what is the imprecision in scheduling.

1 Worst case performance is more
important than average case.

4 In the CS academic literature we say
"realtime does not mean fast", but that's
only partly true. Speed determines
possible range of applications.

3 Control of
scientific
Instruments

] Robotics

1 Communications
(e.g. SS7 and
Frame Relay)

J Multimedia

1 Machinery (e.qg.
automobiles)

Evolution of RTOSs

1 The first realtime OSs were custom,
small, simple, and didn't do much.

1 But now users want realtime and TCP/IP,
Windowing, development, scripting

Custom systems

waorki § RTLinux

So we want realtime and
non-realtime at the same time

d The problem is, as usual, that we want
two contradictory things

1 Fast average case performance on a OS
with everything

1 Fast worst case performance on a simple
OS.

Real Time Linux

1 Shares the CPU
between the
Linux kernel and
the Real-Time
Kernel

3 Allows
programmers 1o
split RT and

-
P
POSIX-style
components of
<’ - applications.

What is it?

-
1 A patch to Linux that adds a co-kernel.

J The co-kernel runs real-time tasks.

1 Realtime tasks share the CPU (or CPUs)
with Linux and Linux processes.

REAL TIME LINUX
KERNEL KERNEL

Rea Time
Tasks

L inux Processes

What contradiction?
-

(1 RTLinux offers realtime tasks in a
primitive, predictable, fast, simple
environment and ...

d Connections to Linux processes that
have the standard Linux environment
available to them.

How does it work?

3 "Fix" Linux so it can't
disable interrupts.

d A small RT kernel
shares kernel space

_, and gets Irgs rst. e inor sUrgery
e main cnange 1o
Linux is an inte?rupt L J&n the kernel
|

control emulator.
4/

"Virtual machines"”

1 Technique used in the 1960s in MVS

1 The MERT OS from Bell Labs [Bell Labs
Technical Journal 1978]

Software structure

1 Some of the RT Kernel is a patch.
1 Most is in loadable kernel modules

1 One of those modules provides a device
called a rt_fifo that can be accessed by
Linux user processes.

fd = open("/dev/rtfl", 2);
read(fd, &uffer, 100);
[* data fromrealtine task 1s 1 n buffer*/

Why can't you have an
integrated RT/Non-RT kernel?

1 You can --- but you have to pay the price

d To make Linux truly preemptive, you
have to throw out 90% of the drivers and
rewrite much of the core code. You do
not have Linux when you are done.

d Otherwise, worst case delay is longest
path between two preemption points and
that is not easy to determine or to reduce
and every code change has a global
effect.

Typical application

d Couple of RT IS
tasks in a
loadable kernel
module

1 Scheduler LKM

d C & Fortran
number crunch

O TCL/TK or
equivalent

Linux process
to crunch numbers

Performance

d RT-Linux is now on Intel machines only,
but has been rewritten to facilitate
porting. Runs on SMP x86s.

d Under 30us interrupt latency on a
486/33mhz

 17us worst case delay for a RT periodic
task on a P166 running netscape.

 4us worst case interupt latency on a
233Mhz PIl (reported).

d SMP RTLinux
runs on 2.1x
Linux kernels.

d Stableon 2
processor
machines.

d Tasks can be
assigned to
Processors.

What is it used for?

 Data acquistion: everything from NASA
mapping to recording data in physiology
experiments.

d Robotics: Mobile robots at
Electromechanical labs in Tokyo.

d Machine tool control: NIST has its own
RTLinux release.

1 Minicams, realtime communications, ...

De-mining robots

 Use Real-Time Linux to collect data and
control actuators

[Use Linux for connectivity and back-end
processing.

Real-Time is not compatible
with standard software design

ﬁractice

J There are hard limits.

1 Average case behavior is not
determinative.

d Dynamic resource allocation is
dangerous.

1 Batching operations is dangerous.
d Hiding complexity is very dangerous!

MARS LANDER and the wrong
lessons.

A The Mars "pathfinder" mobile robot
stopped working and needed to be
patched from earth!

1 The problem was "priority inversion” :
[Low priority process A starts reading IPC

 High priority B trys IPC, blocks on
semaphore.

d Medium priority C runs so A can't
d B times out!

How did they fix it?
0]

d Switched on "priority inheritance"
algorithm so that A "inherited" B's
priority.

1 There is a huge CS literature on priority
inheritance [Liu and Layland, Sha et al]

1 Problem:
1 The problem is not solved by this
algorithm -- just made less likely.

d The real problem is using non-rt
mechanism in an rt system.

Prmmples of RTLinux deS|gn

EI The RT kernel should be small, fast,
extensible via LKMs.

A If you need sophisticated services, use
the Linux side (no dynamic resources on
the RT side).

d Use the UNIX model of linking existing
code to make new applications.

A Application driven kernel design

What's next?
I

1 More SMP and better response time.

1 Realtime clusters and clusters using
realtime.

1 Embedded systems.

4 Incorporation in the main kernel
distribution.

1 POSIX RT (sort of)
J PowerPCs and maybe Alphas, ARMs ..
1 RealTime Perl

