

The Control System for the Caltech Millimeter Array

Steve Scott OVRO

- 6 telescopes, 10 meters in diameter
 - Simultaneous dual receivers (1mm & 3mm)
 - 4GHz IF bandwidth
 - 2x1GHz continuum correlator
 - 4 band 512MHz digital correlator
- No operators postdocs/faculty/students
- Developers are onsite

- Remote Operation
 - On site/home/Pasadena/anywhere
- Multiple simultaneous users
 - Collaboration
 - Trouble shooting
 - Teaching
- User Interface
 - Strong instrument diagnostic capabilities
 - Flexible use of screen real estate

System Architecture

1989-1995

Control Function	Location	Туре	OS	Num	Rqd
Master	Control Bldg	VaxStation	VMS	1	Y
Ant & Rx	Ant	μVax	VaxELN RTOS	6	Y
Water Line Mon	Ant	P-133	WinNT/LabView	6	N
Dig Cor Dcvrt	Control Bldg	μVax	VaxELN RTOS	1	Y
Ana Cor/Delay/	Control Bldg	μVax	VaxELN RTOS	1	Y
Lobe Rotators					
Dig Cor Bln	Dig Cor	68030	PSOS	15	Y
Weather Station	Control Bldg	P-133	WinNT	1	N
Phase Monitor	Control Bldg	80486	DOS	1	N
Database Server	Control Bldg	Usparc336 (4)	Solaris	1	Y

Total Processors: 33 Required Processors: 25

VT100 Based Observing Window

unix.r2w - Reflection 2						
File Edit Connection Set	up Scri <u>p</u> t <u>Wi</u> ndow	/ <u>H</u> elp				
	6	1 🗁 🔚 🚟 🤇		N 6 6 E		
19:51:25	Integrat	ion 69 com	npleted; rep	o 3 out of 6	6	
Caltech Millim	eter Array	ARE	RAY WINDOW	Poir	nting	page 1
UT 19:52:04 9	Ched(R)CLUS	STERCYC(S)		Proc INTEGRA	ATE LST	F 06:21:47
Source Name: M	180302+1658	Qualifier	r:none	VRAD: 0.	.00	
	RA		DEC			
Epoch: B1950			+16:58:27	74.7.3783		
Apparent:	03:05:25		+17:09:29	. 67		
Offsets(arcmin	ı): O	.000	0.000			
0.00 1 47	<u>MM1</u>	<u>MM2</u>	_ <u>MM3</u>	<u>MM4</u>	<u>MM5</u>	<u>MM6</u>
Offset AZ	0.00	0.00	0.00	0.00	0.00	0.00
Offset EL	0.00	0.00	0.00	0.00	0.00	0.00
Radio_off AZ	0.79 -0.49	0.20 -1.16	0.42 -0.39	0.72 -0.63	0.23 -0.91	0.18 -0.85
Radio_off EL Optic_off AZ	-0.49	-1.18	-0.39	-0.83	0.00	-0.85
Optic_off EL	-0.07	0.00	-0.01		-0.91	-0.05
Tel Status	TRACKING	TRACKING	TRACKING	TRACKING	TRACKING	TRACKING
ופו סנמנעס	TRACKING	INHUNINO	TRHUKINO	TRHUKINO	INHUNINO	TRACKING
Pager State: n	naning					
DELAY_OFFSET6		17				
monicma>win mis						
monicma>	1/7/201					
72, 9 VT400	-7 inyo via TELN	ET			Compose	Num Caps Hold

- Why?
 - Instrument bigger and more complicated, need better UI for monitoring and control
 - Need to migrate to better programming environment, from Vax to Unix
 - Need to retire obsolete hardware (Vax)
- Incremental upgrade, preserving existing realtime hardware and software components
- Separate monitoring from control
- Do monitoring first
- Monitoring about 60% complete 4/14/99 NRAO Realtime/OVRO Control System

Upgrade Design Constraints

- Graphical UI with color and plotting capability
- Run over modem bandwidth
- Parallel access by users
- Multiple platorms for UI
 - Solaris, Win32, Mac, OS2
- Simple system
 - Modest computing hardware requirements
 - Limited programming resources (3-4 programmer years)

Future System Architecture

NRAO Realtime/OVRO Control System

MA Log window 19Oct98/14:21:37 Shadowing on B12, B23, B24, B25, B26 19Oct98/14:27:59 Integration 114 completed 19Oct98/14:27:59 -SCH: OBS SOURCE=MAFF2N1 LOW_EL=SKIP 19Oct98/14:28:00 -SCH: FLAGS T=01 19Oct98/14:28:00 Flags: none Tuning:v01 19Oct98/14:28:00 -SCH: INT INTEG=5 REPS=3 LOW_EL=SKIP	<u> </u>	
19Oct98/14:27:59 Integration 114 completed 19Oct98/14:27:59 -SCH: OBS SOURCE=MAFF2N1 LOW_EL=SKIP 19Oct98/14:28:00 -SCH: FLAGS T=01 19Oct98/14:28:00 Flags: none Tuning:v01 19Oct98/14:28:00 -SCH: INT INTEG=5 REPS=3 LOW_EL=SKIP	1	
19Oct98/14:34:04 Integration 115 completed; rep 1 out of 3 19Oct98/14:39:22 Integration 116 completed; rep 2 out of 3 19Oct98/14:44:39 Integration 117 completed; rep 3 out of 3 19Oct98/14:44:39 -SCH: OBS SOURCE=MAFF2N2 LOW_EL=SKIP		
MA Response window		
Executed: voc voc	-	
	141	
alk window		

- Master/slave hierarchy connected with Ethernet
- Soft-realtime at top, hard realtime at bottom
- Hard realtime
 - Antenna pointing every 500 msec
 - Phase and delay control every 6.25 msec
 - Data collection, demodulation, and integration every 6.25 msec
- Soft realtime requirements emphasize
 - Data collection efficiency
 - Response to user input

- Although recording of data is not synchronized between backends (spectrometers), time of data is rigorously recorded
- Direct wires used where Ethernet won't work
 - 3 per antenna (2 \leftarrow ant, 1 \rightarrow ant)
- Real time machines have time synchronized with hardwired 1 pulse per minute
- Newer machines synched with NTP to GPS on the local network

- Ethernet (10Mbps)
- ASCII commands (DECnet)
 - Fully acknowledged protocol (ACK/NACK)
 - Synchronous execution of commands
- Data from backends to master (DECnet)
 - Binary structures (Vax specific)
 - Monitor data to Unix
 - Structures sent in a network independent format
 - UDP

- Parallel access for control and monitoring
- Error system for fault detection
- Powerful peakup routine
- RDBMS for data in realtime

- Full representation of all (~1200) monitoring points and their interdependencies
- Directed Acyclic Graph (DAG)
- Reconfigurable for hardware changes
- Capabilities:
 - Pinpoint root cause of problems for log & display
 - Determines which data are affected by a fault and removes it
 - Integrated with a paging system

- Takes data at 3 half power points around nominal source position
- Uses relative amplitudes per baseline, so resolved sources (planets) can be used
- Simultaneous binning at different SNR levels to give snr/(number sample) tradeoffs
- Takes many measurements so results have statistical significance
- Automatically quits when has accurate solution
- Changes offsets as required to improve SNR

RDBMS

- Store all data (visibilities and header) directly into Sybase commercial RDBMS
- Data integrity, backup, and selection features automatically come with a DBMS
- DBMS maintenance is an issue
- Data rate ~6GB/year

- Parallel access from any location very useful Home access helps maintain instrument
- Expose as much of the instrument as possible
- Monitoring is key to troubleshooting
- System for isolating faults very useful, but reconfiguration is tricky
- Simulation mode for individual pieces of hardware useful during construction phase
- Commercial DBMS works fine for realtime data

Distr

Distributed Computing Lessons

- No disks on embedded processors
- Need quick load time for embedded processors
- Saving and restoring state of instrument is very important issue
- Must have a way to trigger reboots remotely
- Staging of reboots can be tricky
- Distributed computing is good because
 - Allows parallel development
 - Puts processing power and IO devices where needed

