The Control System for the Caltech Millimeter Array

Steve Scott
OVRO
Caltech Millimeter Wave Array

- 6 telescopes, 10 meters in diameter
 - Simultaneous dual receivers (1mm & 3mm)
 - 4GHz IF bandwidth
 - 2x1GHz continuum correlator
 - 4 band 512MHz digital correlator
- No operators - postdocs/faculty/students
- Developers are onsite
Requirements

• Remote Operation
 • On site/home/Pasadena/anywhere

• Multiple simultaneous users
 • Collaboration
 • Trouble shooting
 • Teaching

• User Interface
 • Strong instrument diagnostic capabilities
 • Flexible use of screen real estate
System Architecture
1989-1995

User UI Client
User UI Client
User UI Client

UI Server

Operational Sequencer

Ethernet/DECnet

VAX

micro
micro
micro
micro
Distributed Computers

<table>
<thead>
<tr>
<th>Control Function</th>
<th>Location</th>
<th>Type</th>
<th>OS</th>
<th>Num</th>
<th>Rqd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master</td>
<td>Control Bldg</td>
<td>VaxStation</td>
<td>VMS</td>
<td>1</td>
<td>Y</td>
</tr>
<tr>
<td>Ant & Rx</td>
<td>Ant</td>
<td>µVax</td>
<td>VaxELN RTOS</td>
<td>6</td>
<td>Y</td>
</tr>
<tr>
<td>Water Line Mon</td>
<td>Ant</td>
<td>P-133</td>
<td>WinNT/LabView</td>
<td>6</td>
<td>N</td>
</tr>
<tr>
<td>Dig Cor Dcvrt</td>
<td>Control Bldg</td>
<td>µVax</td>
<td>VaxELN RTOS</td>
<td>1</td>
<td>Y</td>
</tr>
<tr>
<td>Ana Cor/Delay/Lobe Rotators</td>
<td>Control Bldg</td>
<td>µVax</td>
<td>VaxELN RTOS</td>
<td>1</td>
<td>Y</td>
</tr>
<tr>
<td>Dig Cor Bln</td>
<td>Dig Cor</td>
<td>68030</td>
<td>PSOS</td>
<td>15</td>
<td>Y</td>
</tr>
<tr>
<td>Weather Station</td>
<td>Control Bldg</td>
<td>P-133</td>
<td>WinNT</td>
<td>1</td>
<td>N</td>
</tr>
<tr>
<td>Phase Monitor</td>
<td>Control Bldg</td>
<td>80486</td>
<td>DOS</td>
<td>1</td>
<td>N</td>
</tr>
<tr>
<td>Database Server</td>
<td>Control Bldg</td>
<td>Usparc336 (4)</td>
<td>Solaris</td>
<td>1</td>
<td>Y</td>
</tr>
</tbody>
</table>

Total Processors: 33
Required Processors: 25
VT100 Based Observing Window

Caltech Millimeter Array

From: OT 19:52:04 Sched(R)CLUSTERCYC(S)
Proc: INTEGRATE
LST: 06:21:47

Source Name: MS0302+1650
Qualifier: none
VRAD: 0.00

<table>
<thead>
<tr>
<th>RA (Epoch: B1950)</th>
<th>DEC</th>
<th>Apparent:</th>
</tr>
</thead>
<tbody>
<tr>
<td>03:02:43.200</td>
<td>+16:58:27.00</td>
<td>03:05:25.274</td>
</tr>
<tr>
<td>00.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MM1</th>
<th>MM2</th>
<th>MM3</th>
<th>MM4</th>
<th>MM5</th>
<th>MM6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offset Az</th>
<th>Offset EL</th>
<th>Radio_off Az</th>
<th>Radio_off EL</th>
<th>Optic_off Az</th>
<th>Optic_off EL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.79</td>
<td>-0.49</td>
<td>0.00</td>
<td>-0.07</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.20</td>
<td>-1.16</td>
<td>0.00</td>
<td>0.29</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.42</td>
<td>-0.39</td>
<td>0.00</td>
<td>-0.01</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.72</td>
<td>-0.63</td>
<td>0.00</td>
<td>-0.67</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.23</td>
<td>-0.91</td>
<td>0.00</td>
<td>-0.91</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.18</td>
<td>-0.85</td>
<td>0.00</td>
<td>-0.05</td>
</tr>
</tbody>
</table>

Tel Status: TRACKING TRACKING TRACKING TRACKING TRACKING TRACKING

Pager State: not paging

DELAY_OFFSET6 OFFSET=49.57

monicma>win misc

monicma>
System Upgrade (`96→now)

• Why?
 • Instrument bigger and more complicated, need better UI for monitoring and control
 • Need to migrate to better programming environment, from Vax to Unix
 • Need to retire obsolete hardware (Vax)
• Incremental upgrade, preserving existing realtime hardware and software components
• Separate monitoring from control
• Do monitoring first
• Monitoring about 60% complete
Upgrade Design Constraints

- Graphical UI with color and plotting capability
- Run over modem bandwidth
- Parallel access by users
- Multiple platforms for UI
 - Solaris, Win32, Mac, OS2
- Simple system
 - Modest computing hardware requirements
 - Limited programming resources
 (3-4 programmer years)
Future System Architecture

- User UI Client
- User UI Client
- User UI Client

Internet

SUN/UNIX

Shared Memory

UI Server

Operational Sequencer

Sybase RDBMS

TCP/IP

micro

micro

micro
Distributed Computing

- Master/slave hierarchy connected with Ethernet
- Soft-realtime at top, hard realtime at bottom
- Hard realtime
 - Antenna pointing every 500 msec
 - Phase and delay control every 6.25 msec
 - Data collection, demodulation, and integration every 6.25 msec
- Soft realtime requirements emphasize
 - Data collection efficiency
 - Response to user input
Distributed Computing II

• Although recording of data is not synchronized between backends (spectrometers), time of data is rigorously recorded
• Direct wires used where Ethernet won’t work
 • 3 per antenna (2 ← ant, 1 → ant)
• Real time machines have time synchronized with hardwired 1 pulse per minute
• Newer machines synched with NTP to GPS on the local network
Interprocessor Communication

- Ethernet (10Mbps)
- ASCII commands (DECnet)
 - Fully acknowledged protocol (ACK/NACK)
 - Synchronous execution of commands
- Data from backends to master (DECnet)
 - Binary structures (Vax specific)
 - Monitor data to Unix
 - Structures sent in a network independent format
 - UDP
Noteworthy Features

- Parallel access for control and monitoring
- Error system for fault detection
- Powerful peakup routine
- RDBMS for data in realtime
Error System

• Full representation of all (~1200) monitoring points and their interdependencies
• Directed Acyclic Graph (DAG)
• Reconfigurable for hardware changes
• Capabilities:
 • Pinpoint root cause of problems for log & display
 • Determines which data are affected by a fault and removes it
 • Integrated with a paging system
Peakup Routine (POINT)

• Takes data at 3 half power points around nominal source position
• Uses relative amplitudes per baseline, so resolved sources (planets) can be used
• Simultaneous binning at different SNR levels to give snr/(number sample) tradeoffs
• Takes many measurements so results have statistical significance
• Automatically quits when has accurate solution
• Changes offsets as required to improve SNR
RDBMS

- Store all data (visibilities and header) directly into Sybase commercial RDBMS
- Data integrity, backup, and selection features automatically come with a DBMS
- DBMS maintenance is an issue
- Data rate ~6GB/year
Lessons Learned

• Parallel access from any location very useful
 Home access helps maintain instrument
• Expose as much of the instrument as possible
• Monitoring is key to troubleshooting
• System for isolating faults very useful, but reconfiguration is tricky
• Simulation mode for individual pieces of hardware useful during construction phase
• Commercial DBMS works fine for realtime data
Distributed Computing Lessons

• No disks on embedded processors
• Need quick load time for embedded processors
• Saving and restoring state of instrument is very important issue
• Must have a way to trigger reboots remotely
• Staging of reboots can be tricky
• Distributed computing is good because
 • Allows parallel development
 • Puts processing power and IO devices where needed