
Code Sharing using C++ between Desktop Applications and Real-time
Embedded Platforms

Overview

The general product was a data collection and messaging system that could
display real-time business data on the PC desktop running Microsoft Windows or
on LED “message boards” which contained custom embedded CPU boards.

• Description of Software and Hardware Environment

• Development Issues and Concerns

• Lessons Learned

Hardware and Software Environment
• Pentium-class PCs for desktop systems

• Running Windows 95/98/NT in a single-threaded, multi-processing fashion

• Using Microsoft C++ compiler and debugging tools

• Custom CPU board based on a 68340 or PowerPC 860 (601 processor core)
running at 25 MHz

• Pre-emptive real time operating system

• Diab Data C++ cross-compiler & SDS debugger under Windows NT

• Software and Programmer Descriptions

• ~75 KLOC of shared C++ that included limited templates, RTTI support due to
multiple inheritance schemes, and no C++ exceptions

• ~10 KLOC of C++ and C code specifically for embedded target support which
included RTOS task implementations and low-level drivers for hardware support

• Approximately 12 programmers with a 2/3 – 1/3 split among software and
firmware engineers

• Code Development Process

• Classes were developed and unit tested on the desktop

• Classes then compiled and unit tests ran on embedded target

• Classes fit into RTOS framework for the embedded application

• System integration tests:

• System tests of PC applications were run in parallel with the system tests of
the embedded application that used the shared code

• A full system integration test that included PC applications and embedded
application was then run

Development Issues
• Resources

• Avoid duplication of effort by having 1 programmer write for 2 targets
instead of 1 programmer per platform

• Code executes exactly the same on both platforms

• Desktops have better tool sets for development, debugging, profiling,
memory and performance analysis

• Development can proceed on the desktop if the embedded target is not
available

• Code Guidelines

Guidelines need to be established for acceptable behavior that include
performance in speed and size, maintainability, etc. Areas to consider
include:

• C++ Templates

• C++ Exceptions – Throw/try/catch sequences introduce performance and
size hits which may be undesirable

• Portable, standard coding techniques should be used. Avoid pointer tricks
and assumptions or reliance on data word sizes, byte-ordering, etc.

• Minimize non-portable, target-specific code which must be identified and
isolated either in separate modules or with the use of
#ifdef/#elif/#endif bracketing.

• Utilize interface definitions with virtual functions and abstract classes to
abstract processor, operating system, or other target-specific
dependencies

• Architecture Issues

Differences in software and hardware architectures between the different
platforms must be identified and isolated in the code. Some of these areas
include:

• Processor-dependent

• Endian differences – important for communication between different
endian-based computers

• Compiler-introduced “optimizations” which include aggregate data
structure padding, differing sizes for data types

• Computer resource availability

• Raw processor speed – 300+ MHz Pentiums hide a lot of problems
that arise on a 25 MHz 68xxx processor.

• Software

• Single-threaded vs. multi-threaded environment

• Real-time systems have deterministic time constraints vs. run-to-
completion environment on the desktop

• General Issues
Many of the issues that arise in a shared code development environment are
not rocket science, but common sense:

• Each developer must be responsible for maintaining his/her code in both
environments

• Each developer must be willing to adapt his/her code to fit into the
constraints of the embedded target

• Much of successful code sharing relies on sensible human relations:

• Open and constructive communication

• “Diplomacy”

• Ego-less perspective

Lessons Learned

• Software Development Lessons

• Design and develop for both target environments simultaneously

• Code sharing enhanced robustness and reliability

• Code sharing saves a lot of effort

• Performance can be a big issue

• Someone must be responsible for creating and enforcing standards by
which all shared code authors must follow

• Tools

• Know your compilers!

• To a lesser degree, know your linker/loader

• Utilize the rich off-the-shelf tool set available for desktop computers, then
use the specific tools for the embedded target either off-the-shelf or roll-
your-own tools

