Code Sharing using C++ between Desktop Applications and Real-time
Embedded Platforms

Overview

The general product was a data collection and messaging system that could
display real-time business data on the PC desktop running Microsoft Windows or
on LED “message boards” which contained custom embedded CPU boards.

Description of Software and Hardware Environment
Development Issues and Concerns

Lessons Learned



Hardware and Software Environment
Pentium-class PCs for desktop systems
Running Windows 95/98/NT in a single-threaded, multi-processing fashion

Using Microsoft C++ compiler and debugging tools

Custom CPU board based on a 68340 or PowerPC 860 (601 processor core)
running at 25 MHz

Pre-emptive real time operating system
Diab Data C++ cross-compiler & SDS debugger under Windows NT

Software and Programmer Descriptions

~75 KLOC of shared C++ that included limited templates, RTTI support due to
multiple inheritance schemes, and no C++ exceptions

~10 KLOC of C++ and C code specifically for embedded target support which
included RTOS task implementations and low-level drivers for hardware support

Approximately 12 programmers with a 2/3 — 1/3 split among software and
firmware engineers

Code Development Process
Classes were developed and unit tested on the desktop
Classes then compiled and unit tests ran on embedded target
Classes fit into RTOS framework for the embedded application
System integration tests:

System tests of PC applications were run in parallel with the system tests of
the embedded application that used the shared code

A full system integration test that included PC applications and embedded
application was then run



Development Issues
Resources

Avoid duplication of effort by having 1 programmer write for 2 targets
instead of 1 programmer per platform

Code executes exactly the same on both platforms

Desktops have better tool sets for development, debugging, profiling,
memory and performance analysis

Development can proceed on the desktop if the embedded target is not
available

Code Guidelines

Guidelines need to be established for acceptable behavior that include
performance in speed and size, maintainability, etc. Areas to consider
include:

C++ Templates

C++ Exceptions — Throw/try/catch sequences introduce performance and
size hits which may be undesirable

Portable, standard coding techniques should be used. Avoid pointer tricks
and assumptions or reliance on data word sizes, byte-ordering, etc.

Minimize non-portable, target-specific code which must be identified and
isolated either in separate modules or with the use of
#i f def / #el i f/ #endi f bracketing.

Utilize interface definitions with virtual functions and abstract classes to
abstract processor, operating system, or other target-specific
dependencies



Architecture Issues

Differences in software and hardware architectures between the different
platforms must be identified and isolated in the code. Some of these areas
include:

Processor-dependent

Endian differences — important for communication between different
endian-based computers

Compiler-introduced “optimizations” which include aggregate data
structure padding, differing sizes for data types

Computer resource availability

Raw processor speed — 300+ MHz Pentiums hide a lot of problems
that arise on a 25 MHz 68xxx processor.

Software
Single-threaded vs. multi-threaded environment

Real-time systems have deterministic time constraints vs. run-to-
completion environment on the desktop



General Issues

Many of the issues that arise in a shared code development environment are
not rocket science, but common sense:

Each developer must be responsible for maintaining his/her code in both
environments

Each developer must be willing to adapt his/her code to fit into the
constraints of the embedded target

Much of successful code sharing relies on sensible human relations:
Open and constructive communication
“Diplomacy”
Ego-less perspective



Lessons Learned

Software Development Lessons
Design and develop for both target environments simultaneously
Code sharing enhanced robustness and reliability
Code sharing saves a lot of effort
Performance can be a big issue

Someone must be responsible for creating and enforcing standards by
which all shared code authors must follow

Tools
Know your compilers!
To a lesser degree, know your linker/loader

Utilize the rich off-the-shelf tool set available for desktop computers, then
use the specific tools for the embedded target either off-the-shelf or roll-
your-own tools



