
Issues and Alternatives for Real-Time Systems

Don Wells

(prepared for NRAO RT Workshop at AOC 1999-04-12)

dwells@nrao.edu

April 9, 1999

Contents

1 Why are we having this meeting? 2

2 RT experiences 3

3 RT Design Alternatives 4

4 Strategy/Policy/Philosopy Issues 7

5 Nasty technical problems, some unsolved 9

6 Evolution of RT 13

Bibliography 16

1

Issues and Alternatives for Real-Time Systems 2

1 Why are we having this meeting?

Here are four reasons: (any others?)

� several major projects starting up need background and guidance in

making big decisions with longterm implications for NRAO

� several innovative approaches now have some operational experience

that needs to be shared

� recent tech developments like Linux and Java suggest new approaches

to building RT systems that are integrated into the networked world

� RT groups at NRAO sites have tended to work in isolation, so that we

have had some NIH problems, which is a luxury that in an era of tight

budget and fewer people we can no longer a�ord.

Issues and Alternatives for Real-Time Systems 3

2 RT experiences

Some of the participants in this meeting have been doing RT for decades,

and have multiple experiences. I hope that insights gained from these

experiences will come out during the course of this workshop. My own

experiences include:

� (1967-69) Telescope and instrument RT applications in Fortran with

shared common blocks under an IBM RTOS; probably similar to Mod-

comp systems at NRAO at that time

� (1970,1984..) a number of RT systems in assembly language with my

own interrupt routines and no RT-OS; the modern equivalent is `em-

bedded' controller programming

� (1972-76) large telescope, instrument and data display RT applications

in Forth, very similar to Forth systems at the old 36-foot and early 12-

meter.

� (1982) a `soft' RT application (a slow state machine) under VMS in

Fortran

� (1988-92) a big system using C under VxWorks with networking.

A number of my designs have had to operate in a production mode and

be maintained by other people after I departed, so I have worried about

long-term maintenance issues. In my experience, `documentation' in the

classic sense was not necessarily the critical issue for ensuring long lifetimes

for my RT code, contrary to much popular wisdom; I acknowledge that the

popular wisdom may be more valid today. B.Clark, Langston, Sowinski

Issues and Alternatives for Real-Time Systems 4

3 RT Design Alternatives

� Networked versus Embedded

{ Networked systems facilitate development support on state-of-the-

art platforms while enabling RT systems to support remote debug-

gers, remote login, X-clients, NFS clients and RPCs for custom

services. Pisano, Blachman, Brandt, etal

{ Embedded systems are �ne for static applications that need to be

robust and don't need to evolve. The VLBA Correlator contains

more than 100 embedded CPUs which act as high speed front-end

processors, almost dedicated at the one-task-equals-one-CPU level.

� Synchronous versus Asynchronous

{ Synchronous (ticking) state-machine RT systems can be designed

with proofs that they will meet \hard" deadlines while managing

resources. This is the classic, conservative design choice.

{ Asynchronous RT systems can achieve higher performance statis-

tically, but perhaps(?) at the expense of poorer worst-case perfor-

mance. They depend on a pervasive distributed absolute clock and

do a just-in-time scheduling analysis.

We need to discuss this alternative thoroughly at this workshop. The

GBT M&C approach appears to guarantee correct synchronous activ-

ity in its highly distributed system. Should we build all new NRAO

systems with this paradigm? M.Clark, Blachman, D'Addario, etal

Issues and Alternatives for Real-Time Systems 5

� Lightweight Threads versus Memory Protection

{ Lightweight threads are the task abstraction of VxWorks and POSIX

Pthreads: multiple instances of any C function can be spawned as

tasks, each with its own stack space for dynamic variables, but

sharing static variables. Task initiation is quick and cheap, but

the tasks all execute in the same memory address space, and a

wild pointer in one task can trash the memory of another task or

maybe even overwrite the kernel. Tasks are often ephemeral in

this style. For example, VLBA Correlator \jobs" spawn an ensem-

ble of tasks which terminate at completion of the job; a new job

can initiate its tasks in idling state at low priority while prior job

completes.

{ Each task executes in its own protected memory space in many

older RT OSes. This is safer, but task startup is slower and it is

harder to share code and data between tasks. Tasks tend to do

multiple jobs in this style, and to be permanent.

We need to discuss the pros and cons of this RT design alternative

during this workshop, because OSes of both types still exist (I wish we

had a list of RTOSes versus type), and code designed for one style may

be hard to port to the other. Ford, Brooks, etal

Issues and Alternatives for Real-Time Systems 6

� Semaphores-for-Everything versus Interrrupt-Lockout

{ VxWorks and Pthreads and any SMP OS guard all critical regions

with semaphores, and interrupts are almost never inhibited.

{ Interrupts are disabled during kernel critical regions in many older

RT OSes. This produces a variable latency in context switching,

and usually statistically poorer responsiveness overall.

The author dislikes the typical uses of the word \Deterministic" in RT

contexts, especially by vendor salespeople! The word is misleading,

because RT latencies are always variable. Older systems which inhib-

ited interrupts in the kernel often claimed to be deterministic, but they

never were. The real issue is the shape of the histogram of latencies:

the goal in RT design is to bound the worst-case tail of the histogram

of latency. Ford

Issues and Alternatives for Real-Time Systems 7

4 Strategy/Policy/Philosopy Issues

� Table-based designs simplify documentation and inter-personal com-
mununication:

Show me your
owcharts and conceal your tables, and I shall con-

tinue to be mysti�ed. Show me your tables, and I won't usually need

your
owcharts; they'll be obvious.1

The point is that people tend to understand tables intuitively. There

is an equivalence between DBMS relations, table script language and

pointer-linked C structures in the VLBA Correlator architecture2 which

provides a good example of table-based design technique. B.Clark

� State-machine notation, with transition rules, simpli�es documentation

and inter-personal communication. It appears that people tend to

understand state-transition rules intuitively. This concept made a key

contribution in the VLBA Correlator project circa 1991. Shelton

� The role of inheritance of methods of object classes in the GBT should

be explored during this workshop { I would like to hear the GBT design-

ers tell us the pros and cons of their concepts. For example, does the

automatic inheritance and invocation of destructors eliminate mem-

ory leaks? Does the inheritance of exception mechanisms enable warm

restarts by sending soft resets to clear hangups (deadlocks), perhaps

with multiple levels of reset? M.Clark, Glendenning

1F. P. Brooks, Jr., The Mythical Man-Month (Essays on Software Engineering), 1975, on p.102 in a section titled
\Representation is the Essence of Programming".

2see VLBA Correlator Memo 95, September 1989, in section 2.2 titled \Tuples-Scripts-Structs".

Issues and Alternatives for Real-Time Systems 8

� Cheap PCs with a rich market of controller cards raise real questions

about any further investment in VME crates. Industrial RT controllers

are exploiting this market. Somes, Vanosdol

� What about Windows NT? The pros and cons are similar to those

that applied to VMS ten years ago: the richness of the environment is

seductive, with its synergistic combination of RT and non-RT applica-

tions, but there are real risks associated with dependence on a single

company whose strategic goals (primarily non-RT) may be inconsistent

with ours. Creager

Issues and Alternatives for Real-Time Systems 9

5 Nasty technical problems, some unsolved

� Memory leaks are a perennial problem. I would like to hear discussion

of approaches to detecting/preventing memory leaks in RT systems.

My own most successful leak elimination campaign depended on coding

wrappers for malloc() and free() which maintained private lists of

allocations.

� Cache memory is(was?) a frequent source of trouble, especially in

the presence of intelligent device controllers. Modern multiple-CPU

shared-memory systems prevent this problem by invalidating cached

values; their mutexes are global.

� Priority inversion can cause mysterious failures: a priority inversion

bug caused the periodic resets which occurred when the Mars Path�nder

spacecraft was �rst operating on Mars two years ago.3 I wonder if pri-

ority inversion is known not to be a problem in the VLA Modcomp

systems. I also wonder whether the VLA RT team knew about priority

inversion when they built the VLA in early 70s. Sowinsky, B.Clark

Priority inversion is the one piece of RT theory which I did not know

in the 70s (I �rst heard of it in 1988); the fact that so fundamental

an issue was unknown to me in the 70s makes me slightly nervous

that maybe there are other RT concepts that I don't know about. Is

priority inversion a problem only in synchronous state machines, are

asynchronous systems immune to it? M.Clark

3see \What Happened on Mars?" at http://www.cs.cmu.edu/Groups/real-time/mars.html

Issues and Alternatives for Real-Time Systems 10

� RT device driver availability is a perennial problem for RT designers,

especially for RTOSes like VxWorks. Hoyle, Brooks

� RT network security has been a lurking problem for some years now;

we have depended too much on the fact that our RT OSes are not

well known. \..Security through obscurity is no security at all.."4 In

the end, in a fully networked world, RT systems must adopt security

models which are just as rigorous as the ones which non-RT systems

have been been forced to adopt. We should discuss this subject in this

workshop. Hunt

4William Lefebrve, Sun Spots, 1989-04-25

Issues and Alternatives for Real-Time Systems 11

� Debugging concurrent programs can be frustrating:

\..I still don't know what the paradigm should be for debugging

a distributed and concurrent program... I mean, when you've got an

application running across a number of machines, how should you think

about it? When error messages come from deep in the bowels of the

system, asynchronously, how are you going to know what they mean?"5

{ Running two copies of the debugger helps when debugging prob-

lems with lowlevel IPC and semaphores { step the two windows

through the state changes. This approach doesn't help in a truly

large complex system where too many things are happening.

{ Millisecond-precision timestamp logs really helped with VLBACor-

relator debugging at a certain stage circa 1991. A commercial ex-

ample is TNF_PROBE_N() and TNFview.6 Granados

{ Thread-aware graphical debugger technology7 is now available

{ Note the \Debug Mutexes" package.8 The idea is to do a temporary

global replace of _mutex_" with _dmutex_" to get features like

recording the \owner" of a mutex, list of all threads sleeping on

a mutex, detection of non-owner-unlock, list of all mutexes, count

usage, etc.

5Bill Joy, in an interview in Unix Review, April 1988, p.67
6see [LB98, p.251]. TNF=Trace Normal Form.
7Sun Visual Workshop [LB98, p.247]
8see [LB98, p.111{112,249{250]

Issues and Alternatives for Real-Time Systems 12

� There is no generally accepted benchmarking package for RT sys-

tems. Some years ago the CMU RT group had a benchmark called

\Hartstone"9 for evaluating Ada-based RT systems for DoD applica-

tions. I haven't heard anything about it recently. I am a little surprised

that nobody has produced a version of Hartstone for POSIX threads

environments; such a thing could probably be portable and automati-

cally adaptable to a variety of environments. The concept of Hartstone

was execution of multiple tasks at di�erent priorities executing at dif-

ferent \harmonic" (the \H" of Hartstone) frequencies, with detection

of failures to meet schedules. Of course, this approach only applies to

synchronous `ticking' RT systems, not to asynchronous systems.

� The goal of producing proofs of correctness for RT systems has proved

to be elusive, as far as I know. Proofs of simple RT algorithms are easy,

even trivial (CS profs have �lled the journals with them), but proofs

for interesting system problems are hard, if not impossible. Actually,

in the real world, it is the unanticipated problems that bring systems

down (consider the Mars Path�nder case). One model of systems de-

sign is to think in terms of watchdog mechanisms that detect failures

of design assumptions, and intervene to bring systems back into a safe

operating state within �nite time. The philosophy is that failure is

inevitable, and so the issue is whether your design \fails safe". The

RT systems which are known by the author to be robust in production

use are all of this type. Heald

9CMU-CS-90-110, \Distributed Hartstone Real-Time Benchmark Suite", Cli�ord W. Mercer, Yutaka Ishikawa,
Hideyuki Tokuda, March 1990. Several of the authors are still at CMU's Real-Time and Multimedia Laboratory ; see
http://www.cs.cmu.edu/Groups/real-time/.

Issues and Alternatives for Real-Time Systems 13

6 Evolution of RT

� Is RT Unix in our future?

{ Some traditional \RT Unix" systems are said to have high perfor-

mance (LynxOS, Venix) Brooks, D'Addario, Langston

{ Any Unix-like OS (e.g. Solaris, Linux, AIX, etc) which claims to

support \SMP" [Symmetric Multi-Processing] should be presumed

to have a hard kernel with threads and semaphores and preemp-

tive priority, and therefore to be capable of hard RT, until proven

otherwise. This RT application concept combines the robustness of

VxWorks `hard RT' at high priority with the richness of a general-

purpose networked Unix environment running at lower priority, all

in the same hardware box under the same OS kernel (which might

have multiple CPUs to speed up multiple threads). Yodaiken

{ There are now POSIX standards for RT features, and these ap-

pear to be in the process of becoming universal in Unix systems

and in many\hard" RT kernels (like VxWorks), so that portable

RT applications may eventually be practical. Is there any NRAO

experience with POSIX Pthreads?

{ Maybe we could build our RT applications as device drivers, rather

than Posix threads, under Linux? Would this be a prudent policy

for NRAO? Folkers

Issues and Alternatives for Real-Time Systems 14

� Four theses for debate:

{ Some RT systems have multiple CPUs today; almost all will be

concurrent in the end.

{ Many RT systems are networked today, all will be in the end.

Brandt,Hunt

{ Many user interfaces and multimedia systems are multi-threaded

RT systems today, all will be in the end (ubiquitous RT). A good

example is the Netscape Web browser, which is obviously multi-

threaded. Cornwell

{ Ubiquitous GPS technology means distributed RT systems every-

where will know standard time.

� `hard'-RT vs `soft' { if underlying hardware systems all contain em-

bedded controllers maybe most non-embedded RT will be `soft' in the

future. For example, the VLBA Correlator has more than 100 pro-

grammable embedded controllers which synchronize at sub-millisecond

level, and the high-level RT system ticks at only 7.6 Hz and has oppor-

tunity to precompute and bu�er many of its timecritical operations at

lower priorities. Rowen, M.Clark, Cornwell

Issues and Alternatives for Real-Time Systems 15

� Java may become a candidate for serious RT designs in the future; we

should review this possibility during this workshop. See:

{ www.chai.hp.com (\..HP's ChaiVM is an independently devel-

oped small-footprint implementation compliant with the Java[tm]

Virtual Machine Speci�cation. It is targeted for embedded devices

running real-time operating systems..")

{ http://java.sun.com/products/embeddedjava/

and

http://java.sun.com/pr/1999/03/pr990301-03.html (\IBM

Leads Industry Experts to De�ne Java Technology Speci�cations

for Real-Time Extensions")

{ http://www.wrs.com/press/html/jworks.html (Wind River

Systems Introduces Personal JWorks and WindPower TurboJ)

Scott

Issues and Alternatives for Real-Time Systems 16

References

[LB98] Bil Lewis and Daniel J. Berg. Multithreaded Programming with

Pthreads. Sun Microsystems (Prentice-Hall), Mountain View, CA,

1998. ISBN:0-13-680729-1, QA76.76.T55.L49.

