
1

C++ and Real-Time
Programming

B.E. Glendenning
1999-Apr-13

2

Outline
l Is Object-anything any good? A tale of two papers.
l C++ as a better C - the non-controversial bits.
l The other bits.
l What about performance?
l RT/Embedded issues.
l Advice.

3

Does OO Sync with How We Think?
IEEE Software, May/June 1998

l Case study from two ~50kloc systems (program analysis tools),
one written in C, the other C++. Detailed maintenance and
development statistics were kept.

l Same highly skilled staff, C++ version was “true ab initio OO
designed parser”

l Initial C++ defect rates 25% higher (although both were good:
2.9/kloc vs. 2.5/kloc).

l 60% of all fixes for C took less than 2 hours, only 30% of C++
fixes did
» The “time to fix” graph was shifted: all fixes of any complexity took

longer in C++
» Overall, 1341 hours in fixing 94 C++ defects, 375 hours to fix 74 C

defects

4

Does OO Sync with How We Think?
(2)

l Other than GUI building, ACM surveys have not shown reuse to
be a strong success with C++

l Claim: OO is not a good match for human reasoning -
inheritance and polymorphism use long-term memory rather
than short-term memory
» Encapsulation “at least partially fits how we think”

l Possible problems with the paper
» Entanglement of C++ & OO
» First C++ project?
» Relatively small systems
» C++ system did more than the C system in the same size?

5

Impact of Ada and Object-Oriented Design in the Flight
Dynamics Division at Goddard Space Flight Center

SEL-95-001

l Evaluation of ~20 systems implemented in ADA over ~10 years.
l “Use of Ada and OOD in the FDD resulted in

» Increased software reuse by 300%
» Reduced system cost by 40%
» Shortened cycle time by 25%
» Reduced error rates by 62%”

l Earliest projects had performance problems and development
overruns

l OO FORTRAN had reuse, but not cost, improvements
l Verbatim reuse improves productivity ~5x.
l Political failure - workforce lukewarm to Ada

l Question: Is Ada better than C++, or is experience the
difference?

6

C++ as a Better C
l Some changes have already made it into C (void, prototypes)
l Declare variables where needed, especially temporary variable

» f or (i nt i = 0; i <100; i ++) { . . .

l Inline functions, and enumerations, instead of macros
l cons t
l bool

7

Big Features
l Object-Oriented features

» Classes (encapsulation)
– construction/destruction
– disciplined access to data

» Inheritance (extension)
» Polymorphism (run-time selection)

l Generic programming
» template classes, functions, member-functions, …

l Exception handling
l Standard library
l Missing

» Persistence
» Garbage collection

8

Performance
l Pointing aliasing can slow you down ~30% compared to

FORTRAN
l Operator overloading can cause severe performance

degradation
» temporaries creation/destruction, memory allocations, …
» inefficient use of registers
» Can be overcome by “template metaprogramming” techniques, but

requires modern compilers
l Good OO practice usually has more function calls

» Generally not an issue - the small function calls can be inlined or
don’t take much aggregate time

l Virtual function vs. function calls is a non-issue
» it’s very cheap, and if you are using virtual functions you have to do

the i f somewhere anyway

9

Performance (2)
l Optimizers usually have more trouble with C++
l Exceptions usually have some run-time overhead

10

Real-Time/Embedded issues
l Temporaries can cause memory fragmentation
l Some care has to be taken to make an object ROMmable.
l WRS estimates that only ~5% of projects implemented with

VxWorks use C++
» C++ use heavy in telecommunications and banking

l C++ programs tend to use more stack and dynamic memory
» Many devices will be <<1MB for years to come

l Embedded C++ subset has been defined:
» http://www.dinkumware.com/embed9710.html
» No templates, exceptions, multiple inheritance, RTTI
» simple library
» Much like C++ circa 1990

l Smart pointers/arrays can greatly reduce incidence of memory
leaks and problems

11

Advice
l Stick with C unless

» you have a lot of complexity to manage; or
» you already have experienced C++ developers; or
» there is a large code base you know you can reuse

l Consider using the embedded C++ subset and style guide
l avoid idioms that create temporaries
l In any event, be wary of using exceptions in multi-

threaded/multi-tasking code

