CompactPCI Technology

Dick Somes
Technical Director
OEM Business Segment
CompactPCI uses ...

- PCI Electricals
 - 32/64 bit multiplexed address/data path
 - 33/66 MHz clock rate
 - Synchronous single transfer and block mode signalling
 - Developed by INTEL in 1992 as a chip level interconnect for motherboards
 - Extended for option cards in 1994, updated most recently in 1999 by PCI SIG
PCI Performance

- **PCI bus Speeds**
 - 133Mbytes/sec peak
 - 32bits, 5.0V, 33MHz bus clock
 - 266Mbytes/sec
 - 64bits, 33MHz bus clock
 - Theoretical Maximum of 532Mbytes/sec
 - 64bits, 66MHz, 3.3V
 - Extensible to 1066 Mbytes/sec
 - PCI-X, 64 bits, 133MHz
CompactPCI leverages...

- “Standard” off-the-shelf PCI bus:
 - Processor core logic specific to processor architecture
 - Chip level peripherals stable across architectures and generations
 - Software and development tools in common with desktop and server systems
Desktop PCI Slot Count

- PCI spec allows 10 loads:
 - A PCI chip is a load
 - Desktop connectors represent a load
- Desktop PCI: chip is 1 load, connector is 1 load = 2 loads per plug-in card.
- CPU support chipset and GPIO chip on motherboard = 2 loads
- Therefore, 4 slots/system maximum in desktop PC PCI without PCI to PCI bridging
CompactPCI Slot Count

- **CompactPCI**:
 - chip is one load
 - connector is approx. 1/8 load (controlled impedance, minimal reflections)
- Therefore, **CompactPCI** can have 8 slots
- Extensively simulated, tested
- This can be easily expanded with bridge chips (7 more slots/chip)
CompactPCI uses ...

- Eurocard Mechanicals
 - IEEE 1101.10
 - Improved Injector/Ejector
 - Better Grounding for ESD protection
 - Extensive shielding meets CE requirements
 - Alignment pins, keys, insert/eject handles
 - IEEE 1101.11 Allowed (Rear Panel I/O)
 - Standard method of providing rear panel I/O
 - 80mm card depth, mirrors front of chassis 3U/6U Modules
CompactPCI uses ...

- 2 mm pin-and-socket type
 - socket half on plug-in cards
 - Pin half on backplane
- Originally developed by Siemens for telecom applications
- Meets IEC-917 and IEC 1076-4-101 standards
CompactPCI connector

- IEC 61076-4-101 connector utilization
 - J1/P1 for 32 bit PCI (110 pins)
 - J2/P2 for 64 bit extensions (110 pins)
 - J3/P3 for rear IO (95 pins)
 - J4/P4 for H.110 CT bus or rear IO (110 pins)
 - J5/P5 for general purpose or telecom IO (110 pins)
CompactPCI Components

CompactPCI Backplane

233mm (9.17in.)

160mm (6.3 in.)

I/O Panel

J5
J4
J3
J2
J1

www.compaq.com
CompactPCI SBC

www.compaq.com
CompactPCI System
CompactPCI leverages ...

- General purpose desktop and server architectures
 - Intel processors and chipsets
 - Alpha processors and chipsets
 - Chip level PCI devices
- General purpose operating systems
 - Windows
 - UNIX
CompactPCI also supports ...

- Embedded processor architectures
 - MC68K
 - PPC
 - StrongARM
- Embedded OS’s
 - VxWorks (also for Intel and Alpha)
 - pSOS
 - LynxOS
Specifications developed under jurisdiction of PCI Industrial Computer Manufacturers’ Group, PICMG, an industry consortium of over 400 members

- PICMG 2.0 Rev 2.1 CompactPCI Core Spec
 - PICMG 2.1 Rev 1.0 Hot Swap
 - PICMG 2.5 Rev 1.0 Computer Telephony
 - PICMG 2.2 Rev 1.0 VME64 Extensions
CompactPCI evolution

- PICMG 2.0 Rev 3.0
 - Update incorporating Hot Swap and CT Extensions, 66 MHz operation
- Keying
- Bridging
- Dual CompactPCI System Slot
- Instrumentation Extensions
- System Management
- Hot Swap Modular Power
CompactPCI evolution

- Conduction Cooled CompactPCI
- System Slot Hot Swap
- Multicomputing
- IO Enhancements
 - PCI-X
 - NGIO
 - FutureIO
CompactPCI and VME64x

- CompactPCI and VME share common mechanicals
- VME64x signals have been mapped to CompactPCI J4 and J5
- Hybrid CompactPCI/VME systems have been built
- VME SBCs typically use PCI as a local bus
- PCI/VME bridge silicon available
VME SBC

Alpha 21164A
L1=8/8KB (I/D)
L2=96KB

L3 Board level
2 MB Cache

Dynamic Memory
(4 DIMM slots)
16 to 512 MBytes

Core Logic

User
FEPROM.
5 / 3.5 MB

Serial
Lines
3 Timers
& Clock
NVRAM
32 KByte

Peripheral Component Interconnect (PCI)

VME64
backplane
bus

SIO
ISA BRIDGE

SCSI-2
Ethernet

Parallel
Keyboard
& Mouse

P2 conn.

AUI: Handle connector

6Ux160
Form
Factor

32
128
memory bus
256

www.compaq.com
CompactPCI and VME

<table>
<thead>
<tr>
<th></th>
<th>CompactPCI</th>
<th>VME</th>
<th>VME64x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak data rate</td>
<td>133 MB/s (PCI32 @ 33MHz)</td>
<td>40 MB/s</td>
<td>80 MB/s D64</td>
</tr>
<tr>
<td></td>
<td>266 MB/s (PCI64 @ 33MHz)</td>
<td></td>
<td>160 MB/s 2eVME</td>
</tr>
<tr>
<td></td>
<td>532 MB/s (PCI64 @ 66MHz)</td>
<td></td>
<td>320 MB/s 2eSST</td>
</tr>
<tr>
<td>Cards/System w/o Bridging</td>
<td>8</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Bus logic</td>
<td>CMOS</td>
<td>TTL</td>
<td>ETL</td>
</tr>
<tr>
<td>3.3 v migration</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
VME Advantages vs CompactPCI

- **Multicomputing**
 - Distributed interrupt handling
- **Wide variety of processor architectures**
 - General purpose
 - DSPs
- **Wide variety of auxiliary interconnects**
 - RACEway
 - SKYchannel
 - Myrinet

www.compaq.com
CompactPCI Advantages vs VME

- Leverages hardware and software investment for mainstream desktops and server market
- Intelligent IO
- Flexible configuration of system peripherals on local bus
- Greater aggregate BW to memory than competing VME protocol enhancements
- Tighter coupling to memory bus than VME
Will there ever be another VME?
- Longevity
- Evolution
- Backward compatibility

Probably not, but there is an alternative
- Choose a robust HW platform that will track emerging desktop/server technology trends
- Insert technology as it matures
Internet pointers

 - CompactPCI
 - PCI/ISA
 - VME
 - RTOS

- http://www.picmg.org/
 - Membership information
 - Specification Directory
 - Product Directory