

CompactPCI Technology

Dick Somes
Technical Director
OEM Business Segment

www.compaq.com

CompactPCI uses ...

PCI Electricals

- 32/64 bit multiplexed address/data path
- 33/66 MHz clock rate
- Synchronous single transfer and block mode signalling
- Developed by INTEL in 1992 as a chip level interconnect for motherboards
- Extended for option cards in 1994, updated most recently in 1999 by PCI SIG

PCI Performance

- PCI bus Speeds
 - 133Mbytes/sec peak
 - 32bits, 5.0V, 33MHz bus clock
 - 266Mbytes/sec
 - 64bits, 33MHz bus clock
 - Theoretical Maximum of 532Mbytes/sec
 - 64bits, 66MHz, 3.3V
 - Extensible to 1066 Mbytes/sec
 - PCI-X, 64 bits, 133MHz

CompactPCI leverages ...

- "Standard" off-the-shelf PCI bus:
 - Processor core logic specific to processor architecture
 - Chip level peripherals stable across architectures and generations
 - Software and development tools in common with desktop and server systems

PCI System Architecture

Desktop PCI Slot Count

- PCI spec allows 10 loads:
 - A PCI chip is a load
 - Desktop connectors represent a load
- Desktop PCI: chip is 1 load, connector is 1 load = 2 loads per plug-in card.
- CPU support chipset and GPIO chip on motherboard = 2 loads
- Therefore, <u>4 slots/system maximum in desktop</u>
 <u>PC PCI</u> without PCI to PCI bridging

CompactPCI Slot Count

- CompactPCI:
 - chip is one load
 - connector is approx. <u>1/8 load</u> (controlled impedance, minimal reflections)
- Therefore, <u>CompactPCI</u> can have 8 slots
- Extensively simulated, tested
- This can be easily expanded with bridge chips (7 more slots/chip)

CompactPCI uses ...

- Eurocard Mechanicals
 - IEEE 1101.10
 - Improved Injector/Ejector
 - Better Grounding for ESD protection
 - Extensive shielding meets CE requirements
 - Alignment pins, keys, insert/eject handles
 - IEEE 1101.11 Allowed (Rear Panel I/O)
 - Standard method of providing rear panel I/O
 - 80mm card depth, mirrors front of chassis 3U/6U Modules

CompactPCI uses ...

- 2 mm pin-and-socket type
 - socket half on plug-in cards
 - Pin half on backplane
- Originally developed by Siemens for telecom applications
- Meets IEC-917 and IEC 1076-4-101 standards

CompactPCI connector

- IEC 61076-4-101 connector utilization
 - J1/P1 for 32 bit PCI (110 pins)
 - J2/P2 for 64 bit extensions (110 pins)
 - J3/P3 for rear IO (95 pins)
 - J4/P4 for H.110 CT bus or rear IO (110 pins)
 - J5/P5 for general purpose or telecom IO (110 pins)

CompactPCI Components

CompactPCI SBC

CompactPCI System

CompactPCI leverages ...

- General purpose desktop and server architectures
 - Intel processors and chipsets
 - Alpha processors and chipsets
 - Chip level PCI devices
- General purpose operating systems
 - Windows
 - UNIX

CompactPCI also supports ...

- Embedded processor architectures
 - MC68K
 - PPC
 - StrongARM
- Embedded OS's
 - VxWorks (also for Intel and Alpha)
 - pSOS
 - LynxOS

CompactPCI today

- Specifications developed under jurisdiction of PCI Industrial Computer Manufacturers' Group, PICMG, an industry consortium of over 400 members
- PICMG 2.0 Rev 2.1 CompactPCI Core Spec
 - PICMG 2.1 Rev 1.0 Hot Swap
 - PICMG 2.5 Rev 1.0 Computer Telephony
 - PICMG 2.2 Rev 1.0 VME64 Extensions

CompactPCI evolution

- PICMG 2.0 Rev 3.0
 - Update incorporating Hot Swap and CT Extensions, 66 MHz operation
- Keying
- Bridging
- Dual CompactPCI System Slot
- Instrumentation Extensions
- System Management
- Hot Swap Modular Power

CompactPCI evolution

- Conduction Cooled CompactPCI
- System Slot Hot Swap
- Multicomputing
- IO Enhancements
 - PCI-X
 - NGIO
 - FutureIO

CompactPCI and VME64x

- CompactPCI and VME share common mechanicals
- VME64x signals have been mapped to CompactPCI J4 and J5
- Hybrid CompactPCI/VME systems have been built
- VME SBCs typically use PCI as a local bus
- PCI/VME bridge silicon available

VME SBC

CompactPCI and VME

	CompactPCI	VME	VME64x
Peak data rate	133 MB/s (PCI32 @ 33MHz) 266 MB/s (PCI64 @ 33MHz) 532 MB/s (PCI64 @ 66MHz)	40 MB/s	80MB/s D64 160MB/s 2eVME 320MB/s 2eSST
Cards/System w/o Bridging	8	21	21
Bus logic	CMOS	TTL	ETL
3.3 v migration	Yes	No	Yes

VME Advantages vs CompactPCI

- Multicomputing
 - Distributed interrupt handling
- Wide variety of processor architectures
 - General purpose
 - DSPs
- Wide variety of auxiliary interconnects
 - RACEway
 - SKYchannel
 - Myrinet

CompactPCI Advantages vs VME

- Leverages hardware and software investment for mainstream desktops and server market
- Intelligent IO
- Flexible configuration of system peripherals on local bus
- Greater aggregate BW to memory than competing VME protocol enhancements
- Tighter coupling to memory bus than VME

- Will there ever be another VME?
 - Longevity
 - Evolution
 - Backward compatibility
- Probably not, but there is an alternative
 - Choose a robust HW platform that will track emerging desktop/server technology trends
 - Insert technology as it matures

Internet pointers

- http://www.digital.com/oem/
 - CompactPCI
 - PCI/ISA
 - VME
 - RTOS
- http://www.picmg.org/
 - Membership information
 - Specification Directory
 - Product Directory

www.compaq.com