
Very Long Baseline Array Anna D. Kapinska (NRAO)

VLBA Interferometer

VLBA antennas are spread across USA with the longest baseline between Hawai'i and St Croix locations.

- \rightarrow 10 antennas, with longest baseline 8,611km (5,350mi)
- \rightarrow each location has one antenna
- \rightarrow no configurations as such, but free selection of dishes
- → frequency coverage 0.3 GHz - 96 GHz (90cm - 3mm) → resolution 0.17 - 22 mas

VLBA Interferometer

Realtime Photos for All Sites

St. Croix

Los Alamos (not realtime)

Kitt Peak

http://www.vlba.nrao.edu/sites/SITECAM/allsites.shtml

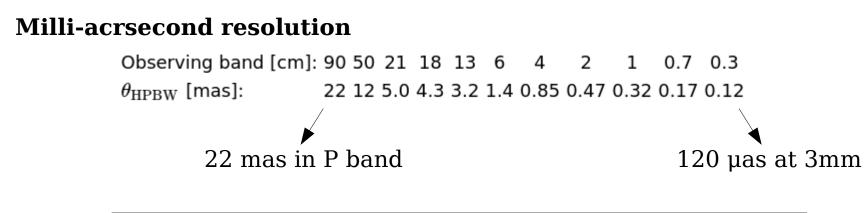
Owens Valley

VLBA data correlator: located in Socorro, NM

 \rightarrow data from each antenna are digitalised locally, recorded and physically sent to Socorro

 \rightarrow data correlation to the specifications of PI

 \rightarrow supporting multiple phase centres, and correlations "per mode"


VLBA Frequency Bands

https://science.nrao.edu/facilities/vlba/docs/manuals/oss/bands-perf

	[1]	[2]	[3]	[4]	[5]	[6]	[7]	
	Receiver	Nominal	Typical	Center	Typical	Baseline	Image	
Single receiver	Band	Frequency	Zenith	Frequency	Peak	Sensitivity	Sensitivity	
	Designation	Range	SEFD	for SEFD	Gain	ΔS ^{512,1m}	∆Im ^{4096,8h}	
	(*)	[GHz]	[Jy]	[GHz]	[K Jy ⁻¹]	[mJy] [µJy beam ⁻¹]	
	90 cm (a)	0.312 - 0.342	2742	0.326	0.077	111	(i) 266	
	50 cm (a,b)	0.596 - 0.626	2744	0.611	0.078	443	(j) 753	
	21 cm (c)	1.35 - 1.75	289	1.438	0.110	2.9	(k) 10	
	18 cm (c)	1.35 - 1.75	314	1.658	0.112	3.2	(k) 11	
	13 cm	2.2 - 2.4	347	2.269	0.087	3.5	(k) 12	
	— 13 cm (d)	2.2 - 2.4	359	2.269	0.085	3.6	(k) 12	
13/4-cm (S/X) dichroic system	6 cm (e)	3.9 - 7.9	210	4.993	0.119	2.1	5	C-band
	7 ghz (e)	3.9 - 7.9	278	6.660	0.103	2.8	7	→ best
	4 cm	8.0 - 8.8	327	8.419	0.118	3.3	8	sensitivity
C-band simultaneous tunings anywhere in 4-8GHz band	4 cm (d)	8.0 - 8.8	439	8.419	0.105	4.4	11	5
	2 cm	12.0 - 15.4	543	15.363	0.111	5.5	13	
	1 cm (f)	21.7 - 24.1	640	22.236	0.110	6.5	16	
	24 ghz (f)	21.7 - 24.1	534	23.801	0.118	5.4	13	
	7 mm	41.0 - 45.0	1181	43.124	0.090	12	29	
	3 mm (g)	80.0 - 90.0	4236	86.2	0.033	(h) 60	(I) 184	

VLBA Resolution & Data rates

Data rates: up to 4Gbps

 \rightarrow in principle allows for broadband (frequency) observing

 \rightarrow but full polarisation products will reduce the bandwidth (and max number of correlator passes)

 \rightarrow some bands allow only 32 Mbps – 2Gbps (the lowest ones)

VLBA Specialised Modes

Ultra-high Spectral Resolution Observing

 \rightarrow transition rest frequency, approximate velocity, and velocity width for the line target must be known in order to set the observing frequency and bandwidth correctly

- \rightarrow must not use pulse cal generators
- \rightarrow minimum spectral resolution: 1 Hz
- \rightarrow maximum of 4096 points per channel, for routine DiFX processing
- \rightarrow support of "spectral zooming" (selection of a subset of correlated spectral points from any or all data channels)

 $\rightarrow some \ documentation: \ \underline{https://science.nrao.edu/facilities/vlba/docs/manuals/oss/spec-tech/line}$

Pulsar Observations

 \rightarrow all special processing required for pulsar observations is supported within the DiFX correlator

 \rightarrow available gating and binning options: binary and matched-filter gating, pulsar binning

 \rightarrow Pulsar modes incur a minimum correlation-time penalty of about 50%

https://science.nrao.edu/facilities/vlba/docs/manuals/oss

VLBA Backend

RDBE - Roach Digital BackEnd

Current system

 \rightarrow two data systems:

- PFB = Polyphase FilterBank
 - \rightarrow gives better amplitude calibration, should be used
 - if <10% accuracy needed
 - \rightarrow up to 16 fixed-bandwidth 32 MHz data channels
 - (IFs) within single RDBE
 - \rightarrow maximum data rates 2Gbps

- DDC = Digital DownConverter

- \rightarrow generally use as default, especially for spectroscopy
- \rightarrow allows 4Gbps data rates (Mark6)
- \rightarrow either 1, 2, 4 or 8 data channels (IFs) in range
- 1 128 MHz in binary steps

VLBA Backend

RDBE - Roach Digital BackEnd

Current system

 \rightarrow two data systems:

- PFB = Polyphase FilterBank

- DDC = Digital DownConverter

<u>Upgrade ongoing:</u> VNDA - VLBA New Digital Architecture

- \rightarrow to replace aging RDBE system (will be backward compatible
- \rightarrow will allow for larger bandwidths
- \rightarrow will support 2, 4, 8 bit sampling (maybe even 12 bit)
- \rightarrow will provide timing stability
- \rightarrow support for non-VLBI use (pulsars, spectroscopy, transients)
- \rightarrow easier maintenance, better RFI avoidance and tolerance, better compatibility with other VLBI systems

Extended VLBA: Y1/Y27, HSA, GMVA, etc

VLBA + VLA/Y1

 \rightarrow can use a single VLA antenna (Y1) with standard VLBA

 \rightarrow offers shortest baseline on VLA – VLBA/PT station: \sim 50km

HSA (High Sensitivity Array)

- \rightarrow VLBA, VLA/Y27, GBT, Effelsberg combined into a single interferometer
- \rightarrow can use any combination of the stations
- \rightarrow note that GBT time is very limited, Effelsberg support 5GHz and above

GMVA (Global 3mm VLBI Array)

→ combines: 8 VLBA stations (HN and SAC excluded), GBT, Effelsberg, Pico Veleta, Onsala, Metsaehovi, Yebes, and Korean VLBI Network (KVN)

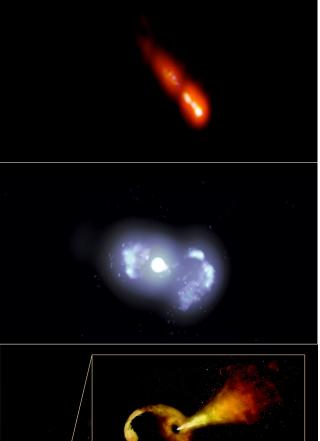
- \rightarrow phased ALMA can be requested
- \rightarrow European part of the GMVA coordinated by MPIfR, Germany

EVN (European VLBI Network) and Global cm VLBI

 \rightarrow a VLBI network of stations operated by an international consortium of institutes: <u>https://www.evlbi.org/</u>

 \rightarrow VLBA can be requested for observations

https://science.nrao.edu/facilities/vlba/docs/manuals/oss/vlba-plus

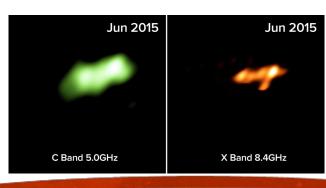

VLBA Science

VLBA is best suited to:

- non-thermal continuum emission (including polarisation) from AGN, pulsars and other compact galactic and extragalactic objects
- Maser emission lines, such as OH (1.7 GHz, 6 GHz), CH3OH (6.7 GHz, 12.2 GHz), H2O (22 GHz), SiO (43 GHz, 86 GHz), and others
- parallax and proper motion studies at accuracies of ~ 10 mas
- absolute astrometry with accuracy of ~200 µas to expand International Celestial Reference Frame
- can also support multi-phase center surveys (wide field)

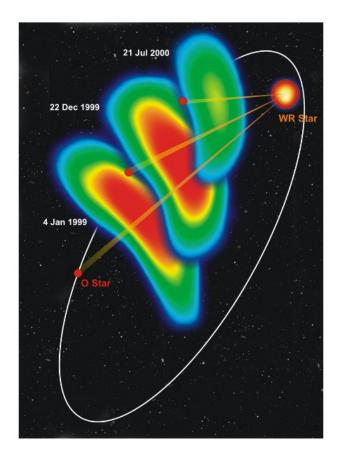


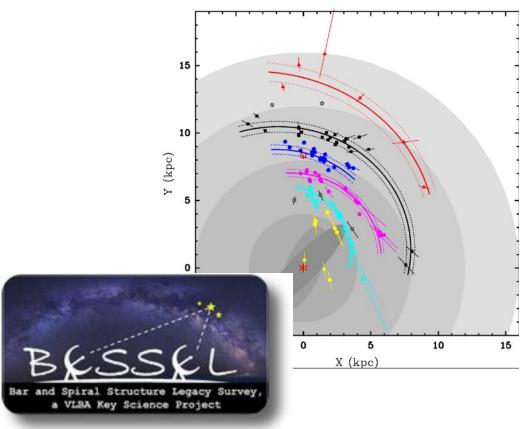
VLBA Science



Resolving High-z blazar jets, PSO J0309+27 Credit: B.Saxon, Spignola+

Multi-frequency VLBA image (2.2–22 GHz) of jets and shocks in galaxy TXS 0128+554 Credit: S.Dagnello, Lister+




Tidal Disruption Event in Arp299 Credit: S.Dagnello, Matilla, Perez-Torres+

VLBA Science

WR140: imaging the evolution of the colliding wind region in Wolf-Rayet & O binary star system. Separation between stars: \sim 5-15 mas = 9-27 AU (Dougherty et al. 2010) High precision relative astrometry → BeSSeL project measures distances to star forming regions through methanol masers (Reid et al) determining the structure of the spiral arms of the Galaxy.

www.nrao.edu science.nrao.edu public.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities,

Inc.

