

VLA and VLASS Overview Anna D. Kapinska (NRAO)

VLA interferometer

Located in New Mexico, on the San Agustin Plains, at 6970 ft (2120m) altitude.

- \rightarrow 28 antennas: 27 observing at any time, 1 for maintenance
- \rightarrow arranged in Y-shape
- \rightarrow each antenna of 25m diameter
- → 4 configurations allowing for range of angular resolutions
- \rightarrow observing north of -40°

Originally constructed in 1973-1980, upgraded in 2003-2012

Angular resolution

Depends on frequency (0.074-45 GHz) and VLA configuration

Configurations: A (largest) \leftarrow B \leftarrow C \leftarrow D (smallest)

Configuration	А	В	С	D					
B _{max} (km ¹)	36.4	11.1	3.4	1.03					
B _{min} (km ¹)	0.68	0.21	0.035 ⁵	0.035					
Band	Synthesiz	Synthesized Beamwidth $\theta_{HPBW}(arcsec)^{1,2,3}$							
74 MHz (4)	24	80	260	850 14 a	cmin				
350 MHz (P)	5.6	18.5	60	200					
1.5 GHz (L)	1.3	4.3	14	46					
3.0 GHz (S)	0.65	2.1	7.0	23					
6.0 GHz (C)	0.33	1.0	3.5	12					
10 GHz (X)	0.20	0.60	2.1	7.2					
15 GHz (Ku)	0.13	0.42	1.4	4.6					
22 GHz (K)	0.089	0.28	0.95	3.1					
33 GHz (Ka)	0.059	0.19	0.63	2.1					
45 GHz (Q) 43 m	0.043	0.14	0.47	1.5					

Angular resolution

Depends on frequency (0.074-45 GHz) and VLA configuration

Configurations: A (largest) \leftarrow B \leftarrow C \leftarrow D (smallest)

Reconfiguration:

approx. every 4 months

Call for proposals:

2x year - 1st Feb & 1st Aug

Configuration	А	В	C	D
B _{max} (km ¹)	36.4	11.1	3.4	1.03
B _{min} (km ¹)	0.68	0.21	0.035 ⁵	0.035
Band	Synthesiz	width 0_{HPBW}	(arcsec) ^{1,2,3}	
74 MHz (4)	24	80	260	850
350 MHz (P)	5.6	18.5	60	200
1.5 GHz (L)	1.3	4.3	14	46
3.0 GHz (S)	0.65	2.1	7.0	23
6.0 GHz (C)	0.33	1.0	3.5	12
10 GHz (X)	0.20	0.60	2.1	7.2
15 GHz (Ku)	0.13	0.42	1.4	4.6
22 GHz (K)	0.089	0.28	0.95	3.1
33 GHz (Ka)	0.059	0.19	0.63	2.1
45 GHz (Q)	0.043	0.14	0.47	1.5

Largest angular scale (LAS) & Field of View (FoV)

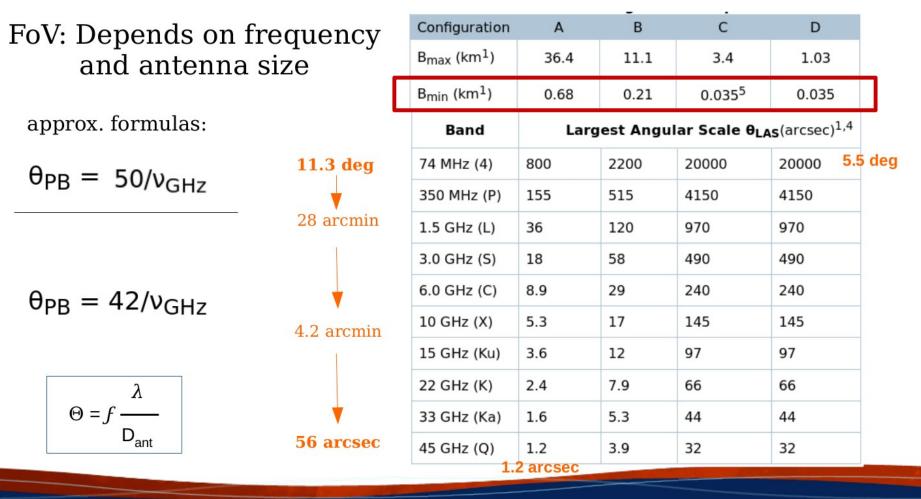
LAS: Depends on frequency and VLA configuration

LAS is the largest angular scale the interferometer is sensitive to. Source features more extended than that will be *"resolved out"*.

FoV: Depends on frequency and individual antenna size

This will be more than LAS, FoV is the amount of sky the antennas "see" with a single pointing (\rightarrow primary beam)

Largest angular scale (LAS) & Field of View (FoV)


LAS: Depends on frequency and VLA configuration

Configuration	А	В	c	D		
B _{max} (km ¹)	36.4	11.1	3.4	1.03		
B _{min} (km ¹)	0.68	0.21	0.035 ⁵	0.035		
Band	Larg	Largest Angular Scale θ _{LAS} (arcsec) ^{1,4}				
74 MHz (4)	800	2200	20000	20000 5.5	5 deg	
350 MHz (P)	155	515	4150	4150		
1.5 GHz (L)	36	120	970	970		
3.0 GHz (S)	18	58	490	490		
6.0 GHz (C)	8.9	29	240	240		
10 GHz (X)	5.3	17	145	145		
15 GHz (Ku)	3.6	12	97	97		
22 GHz (K)	2.4	7.9	66	66		
33 GHz (Ka)	1.6	5.3	44	44		
45 GHz (Q)	1.2 2 arcsec	3.9	32	32		

Largest angular scale (LAS) & Field of View (FoV)

LAS: Depends on frequency and VLA configuration

Frequency specifications

Ten frequency bands from 50 MHz to 50 GHz

- 8 cryogenic bands, with Cassegrain subreflector, covering 1–50 GHz (L to Q bands)
- 2 uncooled, prime-focus bands, covering 50–450 MHz (4 and P bands)

VIA can observe up to 8 GHz instantaneous bandwidth (wide-band)

- Two set of samplers: 8-bit ($\Delta \nu = 2$ GHz) and 3-bit ($\Delta \nu = 8$ GHz)

& in full polarisation (circular and linear depending on band).

Observing modes

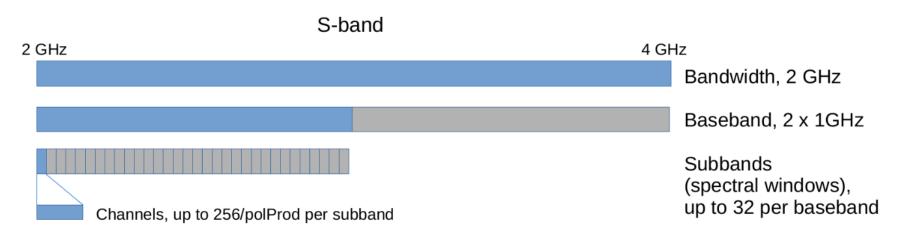
- Continuum (Stokes I)
- Polarimetry (Stokes Q,U,V)
- Spectral lines
- Sub-arrays [each sub-array can perform completely independent observing program simultaneously]
- Mosaicking [multiple pointings and phase centres]
- On-the-fly mapping (OTF) ["scanning mode"]
- Solar system objects
- Using VLA as a VLBI station
- Pulsar observing

WIDAR Correlator

WIDAR=Wideband Interferometric Digital ARchitecture

The correlator's basic features (not all implemented yet):

- 64 independent full-polarization subbands. Each can be tuned to its own frequency, with own bandwidth (128 MHz to 31.25 kHz) and spectral resolution (from 2 MHz to 0.5 kHz)
- 100 msec dump times with up to 16,384 channels and full polarization (faster if spectral resolution, bandwidth, or number of antennas is decreased)
- **Up to 8 sub-arrays**. Maximum implemented to date is 3.
- Phased array capability with full bandwidth (pulsar and VLBI)
- Special pulsar modes: 2 banks of 1000 time bins, and 200 µsec time resolution (all spectral channels), or 15 µsec (64 channels/spw).


General Observing (GO)

Standard observing set ups available to anyone:

- up to 8GHz bandwidth (depending on band)
- 3-bit and 8-bit modes, can use combination of these
- up to 3 sub-arrays in 8-bit mode
- spectral set-up:
 - 1 or 2 GHz basebands (can have independent set-ups)
 - 1 baseband can be made of up to 32 independently tunable subbands
 - subband (spectral window) widths: max 128 MHz, min 31.25 kHz
 - single Baseline Board Pair (BIBP; one per subband is default)
 can handle 256 spectral points divided over polarisation products, i.e.:
 - 256 spectral channels in single polarisation
 - 128 spectral channels in dual
 - 64 spectral channels in full

General Observing (GO) - cont.

This gives up to 16,384 spectral channels.

If more is needed, there are options: (1) recirculation, (2) baseline board stacking, or using (1) and (2) simultaneously

<u>Observing modes in GO</u>: continuum, polarisation, spectroscopy, solar observing, OTF mosaicking (P,L,S,C bands), P band continuum and spectrocopy, 3 simultaneous subarrays, mix of 3-bit and 8-bit modes

Shared Risk & Resident Shared Risk Observing (SRO & RSRO)

Shared risk capabilities are beyond those offered for general observing, but underwent initial development or planning by the NRAO staff, and are available for those that would like to push the VLA and VLBA capabilities to new limits.

Shared risk observations are no guaranteed to succeed, and as per policy the Observatory does not have obligation to make up for inadequate observations (shared risk).

Resident share risk are even less developed endeavours, and require the proposer(s) to be present at NRAO as a visitor for some time to help developing the capability (pushing the boundaries!).

Examples: 3-bit subarrays for VLA, multi-mode subarrays for VLA, real time correlation for VLBA, rapid response of VLBA, improved troposphere model for VLBA, etc.

→ more on offered capabilities for the next VLA/VLBA proposal call (2024A) later today

Post observations: software

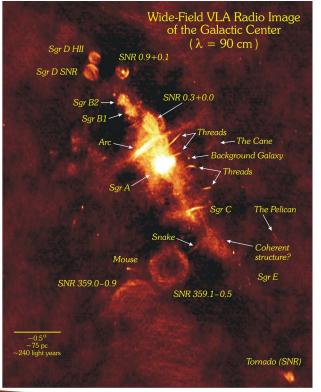
NRAO data reduction software, CASA

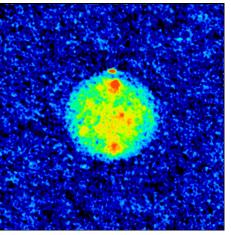
- Designed to handle wide-band upgraded-VLA
 and ALMA data
- Based on C++ reduction tools, with iPython interface for easy data manipulation

Developed by international consortium composed of:

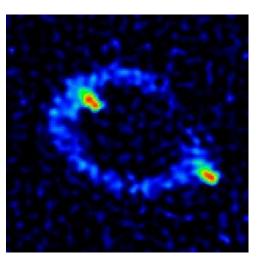
https://casa.nrao.edu/

\rightarrow Talk on Tuesday pm: CASA Data manual processing (VIA VIBA) & VIA Pipel

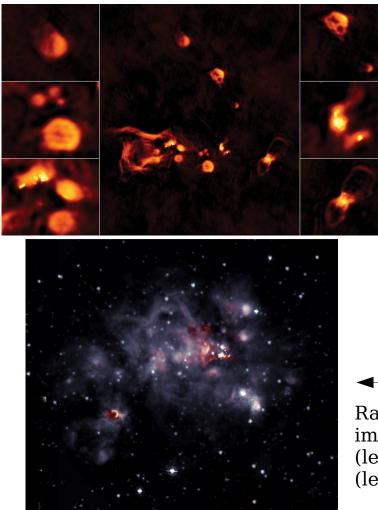

CASA Data manual processing (VLA, VLBA) & VLA Pipeline processing

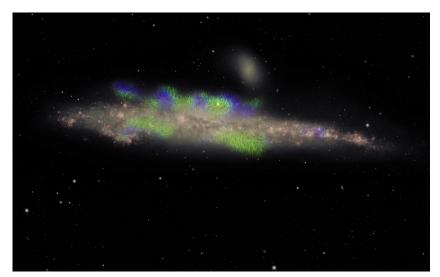


VLA Science


VLA is the most versatile, widely-used radio telescope in the world. It can map large-scale structure of gas and molecular clouds, pinpoint ejections of plasma from supermassive black holes, and find ice on solar system planets.

Galactic Center, Kassim+, 1986.


Discovery of ice on Mercury through a radar experiment in 1991 using NASA JPL/DSN 70-m antenna in Goldstone, CA, as the transmitter, and VLA as the receiver.



First Einstein ring discovered with VLA (by Hewitt+, in 1987): lensed quasar MG1131+0456.

VLA Science

NGC4631, CHANGES survey. Composite of optical and radio, with magnetic structures (filaments) extending into galactic halo (blue pointing away, green towards us). Credit: English+

Radio (orange) and infrared composite image of giant molecular cloud W49A (left), and zoom in onto its HII regions (left top). Credit: DePree+

VLA Sky Survey (VLASS)

Most recent, ongoing NRAO VLA survey. Started in 2017.

Slides contribution: Claire Chandler (NRAO).

VLA Sky Survey (VLASS)

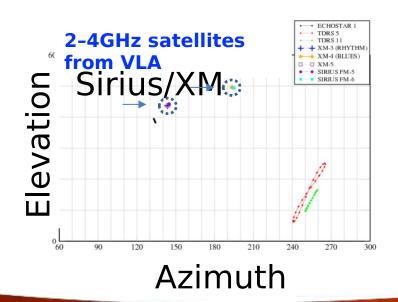
High angular resolution, all-sky* radio survey

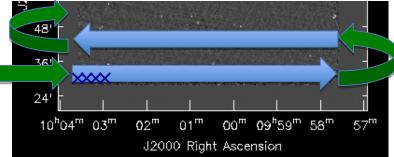
- *All-sky (33,885 deg² above declination -40°)
- Frequency: **3 GHz** (2–4 GHz) \rightarrow "S-band"
- 64 x 2-MHz channels per spectral window, 16 spectral windows
- Stokes I wideband and Stokes IQU cubes
- High angular resolution: **2.5**" (VLA B/BnA-configurations)
- Synoptic and **multi-epoch**: 3 all-sky epochs separated by 32 months
- Observing time: 920 hours per configuration cycle x 6 cycles \rightarrow (13% of VLA science time)
- Full survey observing period: 7 years (Sep 2017 Oct 2024)

Area (deg²)	Resolution (robust)	RMS goal (µJy/bm) epoch/full		Total Detections
33,885 (δ > -40°)	2.5"	120 /69	~290	9,700,000

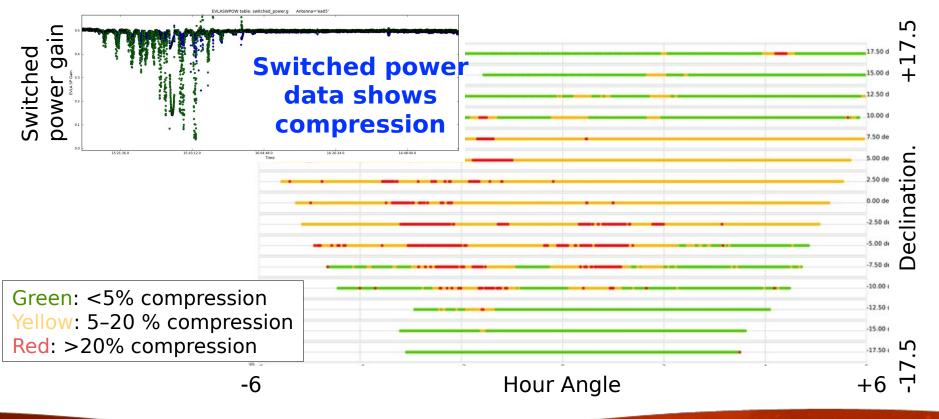
VLA Sky Survey (VLASS): Science Goals

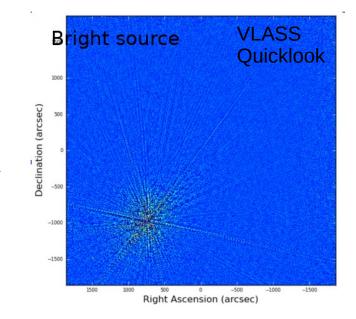
- Be reference radio sky at high angular resolution for multiwavelength studies
- AGN feedback, flares, BH merger events; synergies with surveys at other wavelengths (resolution is key!)
- Transient astrophysics
 - \rightarrow VLASS is expected to open new parameter space for finding dusty/unbeamed GRBs, SNe, compact object mergers, and other transients
- Perform Faraday tomography of the magnetic sky
 → Studies of magnetic fields throughout the universe: hot gas in
 galaxy clusters, magnetic fields within other galaxies, magnetic
 field in the Milky Way
- Extreme pulsars, cool stars with active coronae, planetary nebulae, HII regions




VLA Sky Survey (VLASS)

Product	Timescale for production	Notes	VLASS Processing:	
Raw visibility data	Immediate	In standard archive		
Calibrated data (initial)	1-2 weeks	From standard archive	→ Uses CASA ALMA/VLA data	
Quick Look Images	Few weeks	Stokes I wide-band continuum only	calibration	
Single Epoch Images	Delayed, started	Stokes I wide-band continuum and tapered	pipeline with special VLASS	
Single Epoch Images	In design stage	Stokes IQU cubes	"recipe"	
Single Epoch Catalogs	w/Single Epoch Images	By product	→ New imaging pipeline	
Cumulative Images	In design stage	Stokes I wide-band continuum and tapered	developed	
Cumulative Images	In design stage	Stokes IQU cubes		
Cumulative Catalogs	w/Cumulative Images	By product		


- Multi-epoch sky coverage enabled by On-The-Fly (OTF) mosaicking
 - Scan telescopes across sky while taking array data
 - Very efficient for short dwell times
 - Scan rate 3.3'/s, row sep 7.2'
 - VLASS survey speed: ~20 deg²/hr
 - Equivalent time-on-source: 5s
- RFI


- Compression (identified in pilot data)
 - Affects entire baseband, not just spws containing RFI
 - Problem for much larger fraction of sky than originally thought
 - Special algorithm developed that can correct for moderate compression

Mosaic imaging algorithms

- Quicklook imaging: 'mosaic' gridder
 - Uses fit to azimuthally averaged PB
 - Issues with bright sources outside primary beam that are not subtracted in major cycle
- Single Epoch imaging: 'awproject' gridder
 - Uses 2D PB derived from ray tracing
 - Required further development

 \rightarrow Both algorithms have issues with use of single PSF in minor cycle

Single Epoch Images

- \rightarrow best science ready quality
- \rightarrow will use self-calibration for better decovolution of bright sources
- \rightarrow pipelines under final testing

Single Epoch Images (wideband)

 \rightarrow current definition:

0.6 arcsec resolution (11520x11520 pixel =1x1 deg.) noise <170 microJy/bm

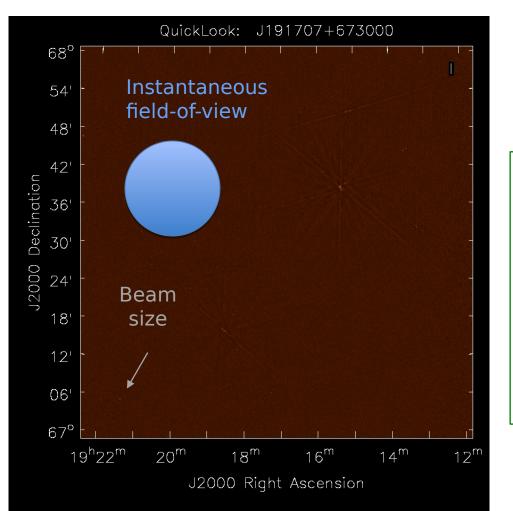
mtmfs will generate multiple image products:

- Stokes I (Taylor term 1 and 2 images),
- RMS images
- source catalog

Single Epoch Images (cubes)

 \rightarrow current definition:

0.6 arcsec resolution (11520x11520 pixel =1x1 deg.)

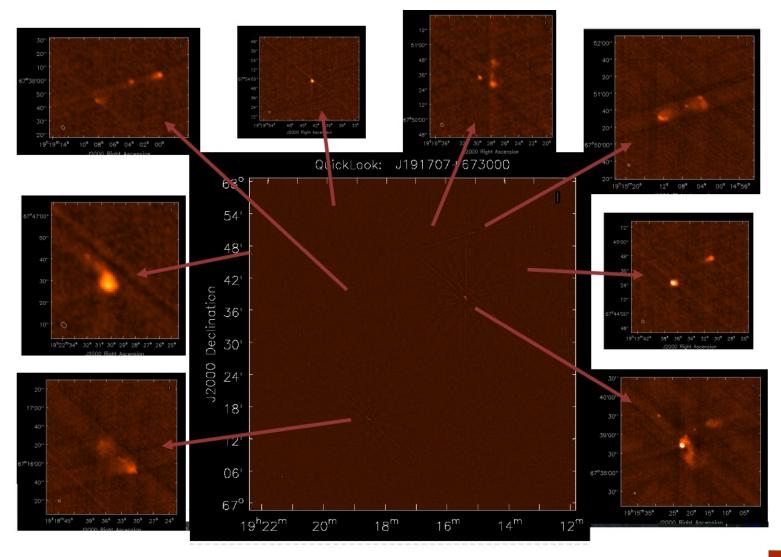

noise <670 microJy/bm for 128MHz cube

mosaic gridder will generate multiple image products:

- Stokes IQU for each 128MHz spectral window
- corresponding RMS images

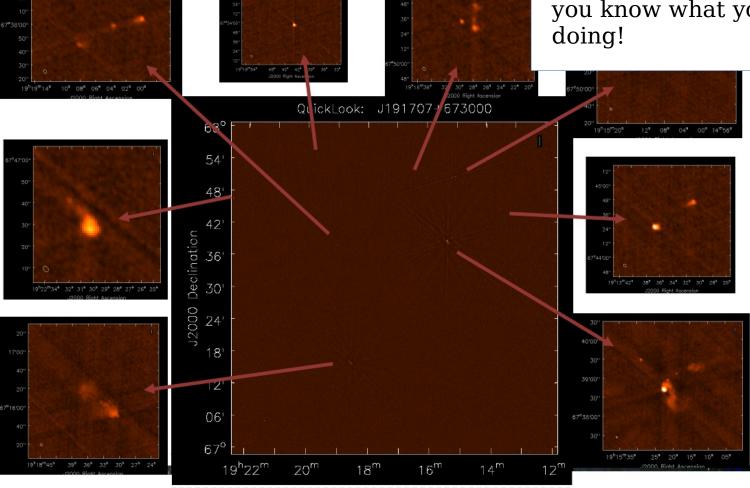
VLASS Quicklook images

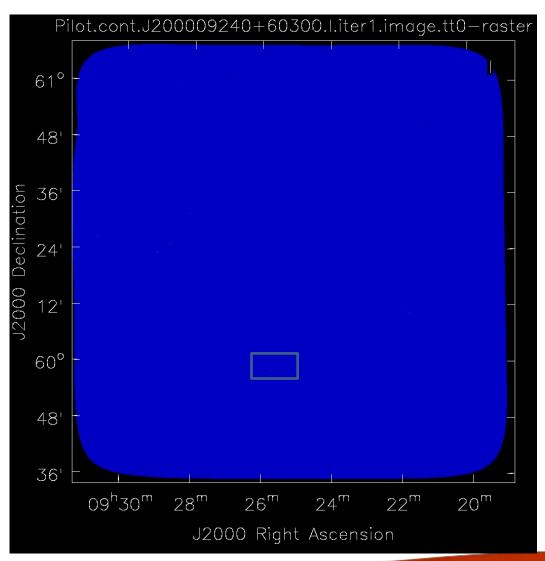
Quicklook images:


1°x1° subimage (full 2°x2°)
1" pixel size (13Mpix)

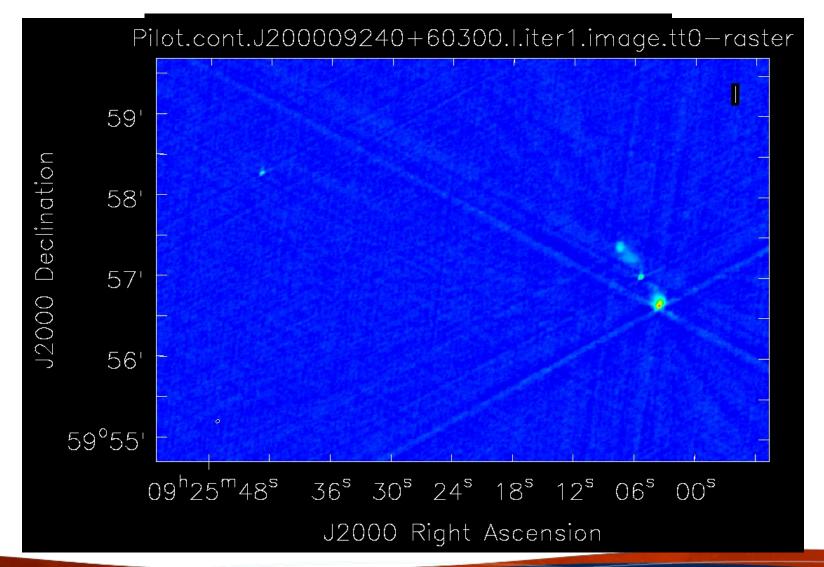
416 phase-centers (2x0.45s T_{int}) ~10GB visibility data multi -term, multi-frequency image

goal: $\boldsymbol{\sigma}_{I} = 120 \boldsymbol{\mu}$ Jy/beam


VLASS Quicklook images


VLASS Quicklook images

Not science ready – **not** recommended to use for science unless you know what you are doing!



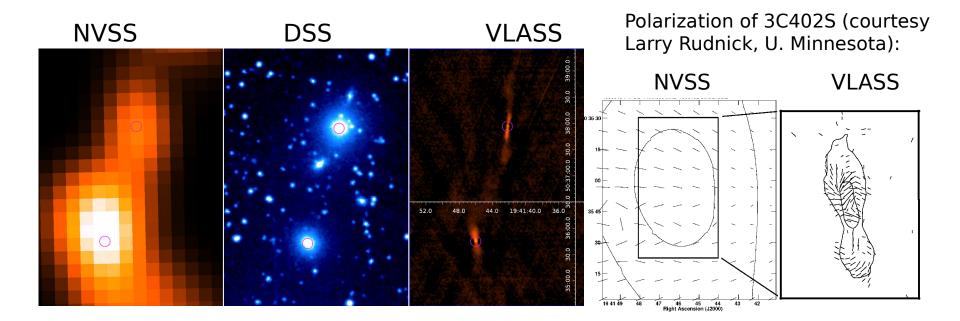
VLASS Single Epoch Wideband images

VLASS Single Epoch Wideband images

VLASS - Enhanced Data Products Community driven

Canadian Initiative for Radio Astronomy Data Analysis (**CIRADA**) funded by the Canada Foundation for Innovation, covers various projects (VLASS, CHIME, ASKAP), total value ~CAD\$9.4M, PI Bryan Gaensler (U. Toronto)

For VLASS CIRADA delivers:


- Source catalogs, including radio polarimetry and multi-wavelength matches
- Cubes of Faraday depth for bright sources
- Transient identification, quality assurance, and announcements based on QL images and *realfast*
- Accessible archive of above products

Shea Brown (U. Iowa) also working on machine learning algorithms for source classification: <u>https://bablai.com/vlass/</u>

VLASS - Enhanced Data Products Polarization

Polarization calibration and imaging under development (NRAO), but polarimetric data products for some objects good, demonstrated below on radio source 3C402

VLASS Data Access

Visibility data, calibrations, images and flags are available through the new NRAO archive (NRAO AAT):

http://data.nrao.edu/

Active Search Inputs: Telescope: EVLA X Project Code: VLASS2.1 X									
				▼ Show Se	arch Inputs 🔻				
View Projects View Observations View Images ↓↑ Project ↓↑ Instrument									
		ment	Title	↓ † First Obs	J₁ Last Obs				
VLASS2.1 EVLA			The Very Large Array Sky Survey	2020-06-26 23:03	2020-11-24 16:45				
Itles The Versel									

Title: The Very Large Array Sky Survey

Abstract: The Very Large Array Sky Survey (VLASS) is a 5500-hr, community-driven project to survey the whole sky visible to the VLA. It will engage radio astronomy exp citizen scientists alike. The data will be taken in three passes over the sky to allow the discovery of transient radio sources, and will cover the frequency range 2-4 GHz wit utilizing the "on the fly" interferometry mode, the overheads will be much reduced compared to conventional survey techniques. The key science topics to be addressed by Time and Space; Hidden Explosions; Faraday Tomography of The Magnetic Sky; Peering Though Our Dusty Galaxy; and Missing Physics. Pi: Vlass Scientist

Co-Authors: Trent Seelig, Amy Kimball, Karlee Radford, Lorant Sjouwerman

Observatior	Observations Images									
	x Yeage 1 + (x)									
L 0 selected (0/10.0 TB)										
۲	View Selectior	n(s) 🎝 Select Al	ll 🗙 Clear Al	II 🖲 C	Download	🖲 View In Carta				
	↓1 Project	\$\$ Longitude	11 Latitude	↓† Band	Sp Resolu	tion Beam Axis R	atio \downarrow_2^n File Name			
	VLASS2.1	0h2m28.316s	-36°30'0.731"	S	2.503	2.080	VLASS2.1.ql.T01t01.J000228-363000.10.2048.v			
	VLASS2.1	0h2m30.250s	-37°30'0.750"	S	2.626	1.768	VLASS2.1.ql.T01t01.J000230-373000.10.2048.v			
	VLASS2.1	0h2m32.283s	-38°30'0.788"	S	2.650	1.587	VLASS2.1.ql.T01t01.J000232-383000.10.2048.v			

Quick Look Images are also available from:

https://archive-new.nrao.edu/vlass/

Including: tile definitions, pipeline weblogs, HiPS images, and first Single Epoch and Cube images!

VLA Sky Survey Resources

- Tile Definitions and Observing Status
- <u>Calibration and Imaging Weblogs</u>
- <u>Quicklook Images</u>
- SE Continuum Images
- SE Cube Images
- Scrollable HiPS Quick Look images

Staff | Contact Us | Careers | Directories | Site Map | Help

Copyright © 2018 Associated Unive The National Radio Astronomy Obs Associated Universities, Inc.

Modified on Tuesday, 28-Feb-2023 08:45:36 MST

www.nrao.edu science.nrao.edu public.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

